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Bence P. Ölveczky, Krishna V. Shenoy,

Surya Ganguli

Correspondence
ahwillia@stanford.edu (A.H.W.),
sganguli@stanford.edu (S.G.)

In Brief

The timing of neural dynamics can be

highly variable across trials due to

uncontrolled behavioral variability or

unobserved cognitive states. Williams

et al. describe an interpretable statistical

model to control for these misalignments

and use this approach to uncover fine-

scale temporal structure that is

imperceptible in raw data.

mailto:ahwillia@stanford.�edu
mailto:sganguli@stanford.�edu
https://doi.org/10.1016/j.neuron.2019.10.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2019.10.020&domain=pdf


Neuron

NeuroResource
Discovering Precise Temporal Patterns
in Large-Scale Neural Recordings through
Robust and Interpretable Time Warping
Alex H. Williams,1,16,* Ben Poole,9 Niru Maheswaranathan,9 Ashesh K. Dhawale,10,11 Tucker Fisher,1

Christopher D. Wilson,14 David H. Brann,10,11 Eric M. Trautmann,1,8 Stephen Ryu,4,12 Roman Shusterman,13
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SUMMARY

Though the temporal precision of neural computa-
tion has been studied intensively, a data-driven
determination of this precision remains a funda-
mental challenge. Reproducible spike patterns
may be obscured on single trials by uncontrolled
temporal variability in behavior and cognition and
may not be time locked to measurable signatures
in behavior or local field potentials (LFP). To over-
come these challenges, we describe a general-
purpose time warping framework that reveals
precise spike-time patterns in an unsupervised
manner, even when these patterns are decoupled
from behavior or are temporally stretched across
single trials. We demonstrate this method across
diverse systems: cued reaching in nonhuman pri-
mates, motor sequence production in rats, and
olfaction in mice. This approach flexibly uncovers
diverse dynamical firing patterns, including pulsa-
tile responses to behavioral events, LFP-aligned
oscillatory spiking, and even unanticipated pat-
terns, such as 7 Hz oscillations in rat motor cortex
that are not time locked to measured behaviors
or LFP.
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INTRODUCTION

The role of spike time precision in neural computation has been

widely examined from both experimental and theoretical per-

spectives, engendering intense debates in systems neuroscience

over the last several decades (Softky and Koch, 1993; London

et al., 2010; Bruno, 2011; Brette, 2015; Denève and Machens,

2016). Assessing the degree of temporal precision in multi-

neuronal spike trains is challenging, since variations in behavioral

and cognitive variables canmask precise spike time patterns. For

example, the temporal precision of olfactory coding may be

underestimated by factors of two to four when spike times are

aligned to stimulus delivery instead of inhalation onset (Shuster-

man et al., 2011;Cury andUchida, 2010; Shusterman et al., 2018).

Thus, experimental estimates of spike time precision hinge on

the choice of an alignment point, which defines the origin of the

time axis on each trial. This choice can often be challenging and

subjective. Even relatively simple tasks often involve a sequence

of stimuli, actions, and rewards that occur with varying latencies,

thus presenting multiple choices for temporal alignment. More-

over, in addition to choosing an origin of time, we must also

choose its units. Should spike times be measured in absolute

clock time relative to some measured event or in units of frac-

tional time between two events? Could any one of these choices

unmask spike-timing precision that is otherwise invisible? These

questions aremost challenging to answer in systems far from the

sensory or motor periphery, where neural responses may not be
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locked to any measurable behavior and instead reflect internal

decisions or changes of mind.

Past studies have addressed these challenges in a number of

ways: grouping trials together with similar durations before aver-

aging spike counts (Murakami et al., 2014; Starkweather et al.,

2017; Wang et al., 2018), manually stretching or compressing

time units between measured task events (Leonardo and Fee,

2005; Shusterman et al., 2011; Kobak et al., 2016; Aronov

et al., 2017), or repeating statistical analyses around different

choices of alignment points (Feierstein et al., 2006; Harvey

et al., 2012; Jazayeri and Shadlen, 2015; Shushruth et al., 2018).

These complications, and the diversity of heuristic ap-

proaches used to address them, underscore a need for statisti-

cal frameworks to assess the temporal precision of neural

computation. Of particular interest are unsupervised statistical

methods that reveal precise patterns in multi-neuronal spike

trains without reference to behavioral measurements. Such

methods would be broadly applicable, as they make few restric-

tive assumptions about the experimental design. Furthermore,

by moving beyond pre-conceived alignments designed by hu-

man experts, these data-driven methods may discover novel

and unexpected results.

While time series and image alignment methods are a well-

studied topic in signal processing (Marron et al., 2015; Pnevma-

tikakis and Giovannucci, 2017), these techniques have rarely

been applied to large-scale neural recordings (but see recent

work by Poole et al., 2017; Lawlor et al., 2018; Duncker and Sa-

hani, 2018). Neuroscientists have historically utilized simple

alignment operations, namely, translating (Baker and Gerstein,

2001; Ventura, 2004) andpotentially stretching and/or compress-

ing activity traces between pairs of behavioral events (Shuster-

man et al., 2011; Leonardo and Fee, 2005; Perez et al., 2013; Ko-

bak et al., 2016). In contrast, popular statistical methods, such as

Dynamic Time Warping (DTW) (Berndt and Clifford, 1994), allow

signals to be non-uniformly compressed anddilated oneach trial.

While such nonlinear warping models can be useful, we demon-

strate that they can be difficult to interpret and sensitive to the

high level of noise that is typical of neural data.

To identify interpretable alignments for high-dimensional spike

trains, we developed a framework for linear and piecewise linear

time warping that encompasses existing human-annotated pro-

cedures (Leonardo and Fee, 2005; Kobak et al., 2016). We

applied these methods to multielectrode recordings collected

from three experiments spanning different animal models (ro-

dents and primates), brain regions (olfactory and motor cortex),

and behavioral tasks (sensation and motor production). In each

case, time warping revealed precise spike patterns that were

imperceptible in the raw data. Moreover, some of these results

were not easily captured by any common behavioral alignment.

For example, in rodents performing a motor timing task, we un-

covered�7Hz oscillations in spike times that were not aligned to

the LFP or any measured behavior.

RESULTS

Time Warping Framework
Our ultimate goal is to identify firing patterns that reliably

occur on a trial-by-trial basis. If these activity patterns are
tightly time locked to a sensory or behavioral event, then we

can characterize the neural response by averaging over trials.

This is illustrated in Figure 1A (left), which shows 100 trials of

simulated neural activity with additive Gaussian noise. The

average activity trace (red; bottom) extracts the neural

response from noisy single-trial instantiations. This simulated

example loosely resembles calcium fluorescence traces, but

the methods we describe can be flexibly applied to any

multi-dimensional time series, including spike trains, fMRI

data, or LFP traces.

More formally, if N neurons are measured at T time points over

K trials, the trial average is given by:

X =
1

K

XK
k = 1

Xk : (Equation 1)

where Xk is a T3N matrix denoting the activity of all neurons on

trial k. In the context of spiking data, each column of X corre-

sponds to a peri-stimulus time histogram (PSTH) of a recorded

neuron. Trial averaging is also a common step in population-level

statistical analyses (Kobak et al., 2016).

Despite its widespread use, trial averaging can produce

inaccurate and misleading results when neural activity is mis-

aligned across trials. For example, introducing a random shift

to each simulated trial produces a less informative result (Fig-

ure 1A, right). Such jitter commonly arises in practice, leading

many research groups to develop custom-built alignment pro-

cedures. For example, in songbirds it is common to manually

segment and cluster song syllables and warp intervening

spike times on a per-syllable basis (Leonardo and Fee,

2005). In olfaction, detailed measurements and fluid dynamics

modeling of the sniff cycle have been pursued to understand

the accuracy of sensory responses (Shusterman et al.,

2011, 2018).

Time warping methods address these challenges through a

data-driven, statistical approach. The key idea is to fit a response

template time series that is shifted and stretched—i.e.,

warped—on a trial-by-trial basis to match the data. The

response template, denoted ~X, is an T3N matrix of activity

traces that captures the average activity across trials after cor-

recting for variability in timing.

The time axis of the response template is transformed by a

warping function on each trial. Formally, we denote the warping

function for trial k as ukðtÞ; this function maps each time bin t

(clock time) to a new index ukðtÞ (template time). If ukðtÞ is an

integer between 1 and T, then the warping transformation for

every neuron n on trial k amounts to the transformation
~Xt;n1 ~Xuk ðtÞ;n. IfukðtÞ is not an integer, then timewarping is imple-

mented by linear interpolation (see STAR Methods). Note that

this model assumes that all recorded neurons share the same

warping function on a trial-by-trial basis, though this assumption

could be relaxed by future work.

Figure 1B illustrates how different classes of warping func-

tions account for single-trial variability in timing. We focus on

three main model classes: shift-only warping, linear warping,

and piecewise linear warping (Figure 1B, top three models).

Shift-only warping is the simplest model: the warping functions

are constrained to be linear with slope equal to one, and only a
Neuron 105, 246–259, January 22, 2020 247



Figure 1. Illustration of Time Warping Models

(A) Single-neuron synthetic data from 100 trials. When data are aligned (top left), the trial average provides a good description of activity (bottom left). When the

data are misaligned by introducing jitter (right), the trial average does not produce a useful description (bottom right).

(B) Time warping models estimate a template (black line, left) that is transformed on a trial-by-trial basis by warping functions (middle column) producing single-

trial estimates of neural activity (right column). Colored lines represent warping functions and estimated firing rates on three example trials. Top row illustrates

shifting the template activity (shift-only warping), second row illustrates stretching and compressing the template in addition to shifting (linear warping), third row

illustrates piecewise linear warping with two-line segments, and the bottom row illustrates a fully nonlinear warping.

(C) Results of shift-only warping (top), linear warping (middle), and nonlinear warping (bottom) (Petitjean et al., 2011) fit to the synthetic data from (A), right. For

each model, we show the warping templates (left, black lines) and warping functions (right, lines colored by ground truth shift; red indicates rightward shift, blue

indicates leftward shift).

(D) The predicted firing rates of shift-only warping provide a denoised trial-by-trial estimate of neural activity.

(E) The raw data sorted by the learned per-trial shift parameter.

(F) Data aligned by the shift-only model; the per-trial shift is applied in the opposite direction to the raw data.
single parameter (the y intercept of ukðtÞ) is fit on each trial. As

its name suggests, the shift-only model can only account for

trial-to-trial differences in response latency. In contrast, a

linear warping model, which fits the slope in addition to the

intercept of ukðtÞ, can account for variable latencies as well

as uniform stretches and compressions of the response

template. A piecewise linear warping model adds further

complexity by adding one or more knots (points where the

slope of ukðtÞ can change). Most generally, nonlinear warping

functions may be used, which non-uniformly stretch and
248 Neuron 105, 246–259, January 22, 2020
compress portions of the template on each trial (Figure 1B,

bottom). In all cases, we constrain the time warping functions

to be monotonically increasing. Loosely speaking, this ensures

that the model cannot go backward in time while making a

prediction. This constraint also implies that the warping func-

tions are invertible, which we later exploit to align spike times

across trials.

The model parameters are fit to minimize reconstruction error

over all neurons, trials, and time points. For simplicity, we chose

the mean squared error to quantify model performance. Ignoring



Figure 2. Recovery of Ground Truth Warping Functions in Synthetic Data

(A) Synthetic spiking data from N= 5 units, T = 150 time bins, and K = 75 trials. Data were simulated from a ground truth model with piecewise linear warping

functions with 1 knot.

(B) Data re-aligned by a shift-only warping model.

(C) Data re-aligned by a linear warping model.

(D) Data re-aligned by a piecewise linear (1-knot) warping model.

(E) Data re-aligned by a piecewise linear (2-knots) warping model.

(F) Data re-aligned by the ground truth model. Note similarity with (D) and (E).

(G) Ground truth neural response templates (black) and estimated response templates (red) from the piecewise linear (1-knot) model. y axis denotes the

probability of spiking in each time bin.

(H) Ground truth warping functions (black) on six representative trials and estimated warping functions (red) from the piecewise linear (1-knot) model.

(I) Model performance ðR2Þ in training, validation, and test partitions of various warping models. Thin lines represent maximum and minimum values; thick lines

represent mean ± standard error. Results were computed over 40 randomized cross-validation runs. The horizontal dashed blue line reflects the performance

ceiling on held-out data achieved by the ground-truth model.

(legend continued on next page)

Neuron 105, 246–259, January 22, 2020 249



the interpolation step of time warping for the sake of clarity (see

STAR Methods), the objective function is:

1

NTK

XN
n= 1

XT
t = 1

XK
k = 1

�
~Xuk ðtÞ;n � Xk;t;n

�2
(Equation 2)

This expression is minimized with respect to the warping func-

tions on each trial, ukðtÞ, and the response template, ~X. Other

loss functions may be substituted for the mean squared error.

In particular, a loss function based on Poisson noise is popular

in neural modeling (Paninski, 2004), and our accompanying Py-

thon package supports this option.

For illustration, we fit shift-only, linear, and nonlinear warping

models to the misaligned synthetic data shown in Figure 1A.

By design, the shift-onlymodel is sufficient to capture the ground

truth variability. As expected, this model identifies a highly accu-

rate template firing pattern (Figure 1C, top left), along with warp-

ing functions that tightly correlate with the ground truth delay

(Figure 1C, top right). The linear warping model is a gentle exten-

sion of the shift-only warping model, which only introduces one

additional parameter on each trial: the slope of each warping

function. Yet even this minor extension produces a slightly worse

estimate due to overfitting (Figure 1C, middle).

To demonstrate a more severe case of overfitting, we fit a

nonlinear warping model using Dynamic Time Warping (DTW)

(Berndt and Clifford, 1994) combined with a standard barycenter

averaging procedure (Petitjean et al., 2011). This method can be

highly effective on datasets with low levels of noise and complex

temporal deformations. However, as wewill soon see, neural da-

tasets often exhibit the opposite: high levels of noise and simple

temporal deformations. In this regime, DTW barycenter aver-

aging identifies a noisy template (Figure 1C, bottom left) and un-

necessarily complex warping paths (Figure 1C, bottom right).

These results demonstrate that time warping models, particu-

larly with complex warping functions, are susceptible to overfit-

ting. We adopted four strategies to mitigate this possibility. First,

as mentioned above, we assume that each trial’s warping func-

tion is shared across neurons, thus mitigating the possibility of

overfitting to noise in any single neuron. Second, as illustrated

by the progression of models in Figure 1C, we always compare

the estimates of complex warping models (e.g., with piecewise

linear warping functions) to the performance of simpler models

(e.g., shift-only warping). Third, we include a roughness penalty

on the response template, which directly encourages the model

to identify smooth firing rates. Fourth, we place a penalty on the

area between each warping function and the identity line, which

penalizes the magnitude of warping on each trial. We include

these roughness and warp-magnitude penalties in subsequent

results, but we show the results of unregularized time warping

in Figure 1C for the sake of illustration.

These models enable several strategies for visualizing and un-

derstanding neural data. First, one can directly inspect themodel
(J) Cross-validation procedure (see STARMethods). On each trial, the warping fun

templates are fit to a subset of the trials (blue boxes). The training set refers to the

subsets of the remaining data (uncolored white regions).

(K) Validation procedure for single-neuron raster plots. The visualized neuron is he

the held-out cell.
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parameters (Figure 1C): the response template for each neuron

captures the shape of the neural response, while the warping

functions capture trial-to-trial variability in timing. Second, one

can view the model prediction as a denoised estimate of firing

rates on a single-trial basis (Figure 1D). Third, one can re-sort

the trials by the slope or the intercept of the warping function,

producing a multi-trial raster plot that is easier to visually digest

(Figure 1E). Finally, one can invert the warping functions on each

trial to transform the raw data into an aligned time domain (Fig-

ure 1F). This alignment procedure simply entails plotting each

activity trace as a function of u�1
k ðtÞ instead of raw clock time

t. Intuitively, this amounts to reversing the flow diagram shown

in Figure 1B, which is possible as long as the warping functions

are monotonically increasing and thus invertible.

Extraction of Precise, Ground Truth Spike Patterns on
Synthetic Data
Before proceeding to biological data, we examined a more chal-

lenging simulated dataset consisting of spike trains from N= 5

neurons, T = 150 timebins, and K = 75 trials. On each trial, the

neural firing rates were time warped by randomized piecewise

linear functions with one knot (the ‘‘ground truth’’ model). This re-

sulted in spike trains that appear highly variable in their raw form

(Figure 2A).

Time warping successfully reveals the spike patterns corre-

sponding to the ground truth process. Figures 2B–2E show

model-aligned spike trains (as in Figure 1F) across warping

models of increasing complexity. The patterns evident in the

ground truth data (Figure 2F) are partially revealed by shift-only

and linear time warping (Figures 2B and 2C), but these models

are too simple to capture the fine-scale temporal structure in

the data. A piecewise linear warping model with one knot

(piecewise-1model; Figure 2D) accurately captures these details

and represents a parsimonious and ‘‘correct’’ model, since it

matches the data generation process. Furthermore, the param-

eters of this model closely matched the ground truth response

template (Figure 2G) and warping functions (Figure 2H). Using

a piecewise linear model with 2 knots did not result in substantial

overfitting and indeed closely matched the result of the piece-

wise-1 model (Figure 2E).

Identifying a parsimonious warping model is challenging in

real-world applications where there is no observable ground

truth. To select the appropriate model and regularization

strengths, we developed a nested cross-validation scheme,

which correctly identified the piecewise-1 model as having

optimal performance on a held-out test set (Figure 2I). This

approach fits the neural response templates to a subset of trials

(Figure 2J, shaded blue regions) and fits the warping functions to

a subset of the neurons (Figure 2J, shaded red regions). We refer

to the intersection of these two sets as the training set (Figure 2J,

shaded purple regions), while the intersection of the complement

sets is used for validation and testing (Figure 2J, unshaded
ctions are fit to a subset of neurons (red boxes). For each neuron, the response

overlap of these two regions (purple overlap). The validation and test sets are

ld out; the warping functions are fit to the remaining neurons and then applied to



Figure 3. Time Warping of Mitral/Tufted Cell Activity Recovers Sniff-Locked Activity Patterns

(A) A head-fixed mouse sampled odorized air (a-pinene). Variability in inhalation onset from trial to trial caused jitter in the olfactory response.

(B) Spike raster plots for six representative cells over allK = 45 trials with spike times aligned to odor delivery. Black dots denote spike times, and blue dots denote

sniff onsets. Blue histogram indicates the distribution of sniff onsets.

(C) Same as (B) but with trials re-ordered by the magnitude of shift warping.

(D) Same as (B) but with the time axis aligned by shift-only warping.

(E) Same as (B) but with the time axis aligned to sniff onset.

(F) Trial-to-trial reliability ðR2Þ for all N= 30 cells before (x axis) and after (y axis) alignment by the shift-only model. Dashed black line indicates the identity line.

Dashed gray lines indicate a 2-fold increase or decrease in R2. The p value is computed using a Wilcoxon signed rank test.

(G) Same as (F) but comparing the alignment of linear warping to shift-only warping.

(H) Same as (F) but comparing the alignment of shift-only warping to sniff onset alignment.
regions). This procedure is then repeated many times with

different randomized partitions of the data.

We used the proportion of variance explained ðR2Þ to quantify

model performance. Unlike in trial-averaged analyses, R2 values

will typically be very low because spike trains exhibit substantial

single-trial variability. In the case of this synthetic dataset in Fig-

ure 2, the ground truth model achieves an R2 of approximately

0.131 (blue dashed line, Figure 2I). This R2 value, while low due

to unexplainable trial-to-trial spiking variability, nevertheless

constitutes an upper bound on the R2 value achievable by any

model on a held-out test set. The piecewise-1 model closely

matches this performance, achieving an average R2 of 0.113

on the test set (Figure 2I). However, in real experimental data,

it is not possible to know how close we are to this performance

ceiling. Thus, while R2 can be useful as a relative measure

when comparing two different models, the absolute magnitude

should be interpreted cautiously.

After using cross-validation to select the number of warping

function knots and the regularization parameters, we are often

interested in using time warping to visualize single neuron

raster plots (as in Figures 2A–2F). To further validate these

raster plots, we can hold out single neurons, fit the model to
the remaining data, and apply the inverse warping functions to

align the held-out neuron (Figure 2K). All model-aligned raster

plots shown in subsequent results are generated using this

procedure.

Alignment of Olfactory Responses to Sniff Cycle
Mitral/tufted cells in the mouse olfactory bulb exhibit variable

firing patterns across trials when naively aligned to odor delivery

(Figure 3A). If spike times are instead aligned to the onset of inha-

lation, neural responses are drastically more reliable (Shuster-

man et al., 2011).

We reasoned that simple time warping models could be used

to align mitral/tufted cell activity using purely neural activity, by-

passing the need to measure inhalation directly. We tested this

hypothesis on a multielectrode recording from N= 30 neurons

over K = 45 trials of odor presentation at a fixed concentration

(a-pinene, 10�2 dilution from standard vapor pressure). We

experimentally measured intra-nasal pressure to detect sniff

onset and offset, but these measurements were not provided

to the model and spike times were instead aligned to odor pre-

sentation. As expected, this initial alignment strategy produced

highly disordered spike rasters (Figure 3B).
Neuron 105, 246–259, January 22, 2020 251



Figure 4. Time Warping of Reach Dynamics in a Nonhuman Primate

(A) Reaches toward a 90� target were analyzed.

(B) Spike data from four example multiunits over all trials. Units 1 and 4 were from primary motor cortex; units 2 and 3 were from premotor cortex. At the bottom,

the temporal distribution of task events is shown: 100 ms after target onset (TARG, green), end of delay period (GO, blue), and movement onset (MOVE, red).

(C) Scatterplot showing correlation between the hand movement onset on each trial and the learned shift parameter in the shift-only warping model.

(D) Same as (B) but with trials re-ordered by the magnitude of shift warping.

(E) Same as (B) but with the time axis aligned by shift-only warping.

(F) Same as (B) but with the time axis aligned by linear warping.

(G) Same as (B) but with the time axis aligned by piecewise linear warping with one knot.
We found that a shift-only time warping model captured pre-

cise sensory responses from these raw data, as revealed by

re-sorting the trials based on the model’s shifts (Figure 3C) or

by applying these shifts to align the raw spike times (Figure 3D).

Here, as well as in all subsequent results, we use the leave-one-

out validation procedure shown in Figure 2K; thus, any temporal

structure seen in Figure 3D is unlikely to arise as an artifact of

overfitting.

As expected, aligning spike times to inhalation onset revealed

similar patterns in these data (Figure 3E). Indeed, the shifts

learned by the model correlated very tightly with the onset of

sniffing (see blue dots and histograms, Figures 3B–3E). These re-

sults are nonetheless a useful demonstration, since themodel in-

ferred these precise responses from the neural data directly.

Furthermore, closer examination suggested that the unsuper-

vised, shift-only model may enjoy slight performance advan-

tages relative to the simple supervised alignment method. For

example, when aligned to sniff onset, cells 4 and 5 in Figure 3

exhibit subtle, but perceptible, jitter in their responses (Fig-

ure 3E), and this variability is visibly corrected by time warping

(compare to Figure 3D).

To explore these effects on a neuron-by-neuron basis, we

quantified trial-to-trial variability before and after time warping

by computing the coefficient of determination ðR2Þ of the neu-

ron’s PSTH. Larger R2 values imply that the trial-averaged

PSTH better approximates single-trial firing rates. We fit time

warping models while holding out neurons one at a time and

computed R2 on the held-out neuron before and after warping.
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Relative to the raw spike times, shift-only time warping improved

R2 in nearly all neurons, with many increasing over 2-fold (Fig-

ure 3F; average 107% increase inR2, geometric mean; Wilcoxon

signed rank test, p< 10�4, n = 30). Linear warping did not pro-

duce consistent improvements at the level of single neurons

(Figure 3G; average 6.6% decrease in R2, geometric mean; Wil-

coxon signed rank test, p = 0:24, n = 30). Relative to sniff

onset alignment, shift-only time warping improved the R2 crite-

rion mildly (Figure 3H; average 11% increase in R2, geometric

mean; Wilcoxon signed rank test, p = 0:005, n = 30). Overall,

we conclude that timing variability in these olfactory responses

is well described by a per-trial shift. Further, the optimal shift cor-

relates tightly with, but may not coincide exactly with, sniff onset

(Shusterman et al., 2018).

Alignment ofMotor Cortex Dynamics during Reaching in
Nonhuman Primates
Neural dynamics underlying motor control exhibit variable time

courses due to differences in reaction times and muscle kine-

matics. To investigate the benefits of time warping in this setting,

we examined data from a canonical reaching experiment in a

nonhuman primate (Figure 4A). On each trial, the subject (mon-

key J) moved its arm to one of several target locations after a

delay period that randomly varied between 300 and 700 ms. In

addition to this inherent timing variability due to task design,

the monkey exhibited variable reaction time ranging from 293

to 442 ms (5th and 95th percentiles). We limited our analysis to

upward reaches (90� from center) with the target placed at 40,



80, or 120 cm from the center. We observed similar results on

other reach angles (Figure S1), as well as when data was pooled

across all reach angles (data not shown). Multiunit activity was

collected from N = 191 electrodes across two Utah multielec-

trode arrays placed in primary motor (M1) and premotor (PMd)

cortices (see STAR Methods).

The most dramatic changes in neural firing rates are closely

time locked to movement (Kaufman et al., 2016). Thus, it is com-

mon to track hand position on a moment-by-moment basis and

use these measurements to align spike times to the onset of

movement or the peak hand velocity on each trial. We instead

examined spike trains aligned to the beginning of the delay

period (Figure 4B) and used time warping to infer an alignment

without any reference to the animal’s behavior.

As expected, a shift-only warping model closely aligned spike

times with the onset of movement. The model’s learned shift

parameter on each trial correlated very tightly with movement

onset (Figure 4C), achieving a comparable level of performance

ðR2 = 0:9Þ to what was recently reported for a complex, nonlinear

warping method (Duncker and Sahani, 2018). Furthermore, the

shift-only warping model enabled the visualization of move-

ment-related firing rate changes in single-neuron rasters, either

by re-sorting the trial order of the raw data (Figure 4D) or by re-

aligning the spike times (Figure 4E).

Thus, learning a single per-trial shift was sufficient to align neu-

ral spike times to movement without any reference to hand-

tracking data. However, shifting spike times in this manner also

destroyed other structure in the data. Namely, a subset of multi-

units, mostly in PMd, showed increased firing around � 100 ms

into the delay period, i.e., shortly after the reach target was visu-

ally presented to the animal (see units 2 and 3 in Figure 4). Due to

the variable delay between target onset and movement onset, a

shift-only warping model is incapable of simultaneously aligning

spikes across these two events.

A linear time warping model more appropriately captures this

structure in the data. On each trial, the model utilizes its two free

parameters—the slope and intercept of the warping function—to

precisely align these two task events (Figure 4F). Thus, these re-

sults provide strong evidence, via an unsupervised time warping

method, that reliable neural dynamics occur around the time of

movement onset and shortly after target onset. Piecewise linear

warping functions did not provide substantial benefits over linear

warping; however, linear warping provided a reproducible

benefit over the shift-only warping model in cross-validated per-

formance (Figure S1).

Detection of �13–40 Hz Spike-Time Oscillations in
Primate Premotor Cortex
Thus far, we have shown that the temporal alignments learned

by simple warping models can closely correlate with behaviors

(e.g., movement or sniffing) and sensory cues (e.g., reach

target presentation). This agreement demonstrates that time

warping models can converge to reasonable and human-inter-

pretable solutions and, conversely, suggests that established

alignment practices in these systems are well justified from a

statistical perspective. We now show that time warping can

also uncover more subtle and unexpected features in spike

train data.
LFP signals in primate premotor cortex show oscillations in the

beta frequency range (13–40 Hz) during movement preparation,

which are correlated with spike timing (Murthy and Fetz, 1992;

Sanes and Donoghue, 1993; Reimer and Hatsopoulos, 2010).

While recent work has investigated the relationships between

LFP and behavior (Khanna and Carmena, 2015, 2017; Chandra-

sekaran et al., 2019), the impact of beta oscillations on popula-

tion-level spiking activity is still poorly understood. Recent

work used a complex, black box model of neural dynamics to

detect oscillatory structure in high-dimensional spike trains

(Pandarinath et al., 2018). Here, we show that shift-only or linear

time warping models can recover similar oscillations.

We examined premotor cortical data collected from two

different monkey subjects (Monkey J and Monkey U) performing

point-to-point reaches; one animal performed these reaches

with an unrestrained hand, while the other used amanipulandum

(see STAR Methods). Since the oscillations are strongest during

the pre-movement delay period, we focused on a time window

beginning 400 ms prior to and 100 ms after go cue presentation.

We found that having a larger number of trials was beneficial, so

we pooled trials from all reach angles for this analysis. We

analyzed multiunit data for each monkey from N= 96 electrodes

placed in PMd.

No oscillations were visible in spike rasters aligned to go cue

(Figure 5A; data from Monkey U). However, re-aligning these

spike trains based on a shift-only warping model revealed oscil-

lations at �18 Hz in Monkey U (shown in Figure 5B) and at

�40 Hz in Monkey J (Figure S2); these results are within previ-

ously reported frequency ranges (Murthy and Fetz, 1992; Sanes

and Donoghue, 1993). In Monkey U, these oscillations were

more apparent after linear warping (Figure 5C), suggesting that

the frequency (in addition to the phase) of the oscillations may

be variable. Further, these oscillations were roughly in-phase

across multiunits; as a result, averaging spike counts across all

multiunits and trials after time warping produced cleaner esti-

mates (Figures 5A–5C, bottom).

To quantify these effects across all multiunits, we compared

the PSTHs computed from raw data (blue traces, Figure 5A) to

PSTHs computed from data aligned by linear time warping

(blue traces, Figure 5C). We used Fourier analysis to estimate

the amplitude and phase of the oscillation at 18 Hz and found

that time warping increased the strength of the oscillation by

1–2 orders of magnitude in most multiunits (Figure 5D). Further-

more, in the raw PSTHs, the oscillation phases were widely

spread across multiunits, consistent with there being no detect-

able oscillations above background noise (Figure 5E, gray dots);

in the aligned PSTHs, the phases were tightly clustered, reflect-

ing that oscillations were detectable and in-phase across nearly

all multiunits (Figure 5E, purple dots).

We confirmed that the spike-level oscillations were in-phase

with LFP oscillations in Monkey U. To do this, we applied the

time warping models fit on spike train data to align bandpass-

filtered LFP signals (10–30 Hz). The LFP signal was misaligned

across trials in raw data but was accurately aligned by the

spike-level time warping models (Figure S3), suggesting that

the two signals are coherently time warped (in this case, tempo-

rally shifted and/or stretched) on a trial-by-trial basis. On ameth-

odological level, this demonstrates that time warping models
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Figure 5. Time Warping Reveals Spike-Level Oscillations in Primate Premotor Cortex

(A) Multiunit activity aligned to go cue. Four representative multiunits are shown; spike rasters (black) trial-average PSTH (blue) are shown for each multiunit. Go

cue onset is shown in red. The average firing rate across all multiunits is shown on the bottom (black trace). Shaded gray region denotes upper and lower quartiles.

(B) Same as (A) but with spike times aligned by shift-only warping model. Each displayed multiunit was held out from the model fit.

(C) Same as (A) but with spike times aligned by linear warping model. Each displayed multiunit was held out from the model fit.

(D) Oscillatory power at 18 Hz in trial-averagemultiunit activity aligned to go cue (black dots) and after linear warping (purple dots). Each dot represents one of

N= 96 multiunits.

(E) Same as (D) but showing oscillation phase for each multiunit.

(F) Multiunit activity averaged across electrodes and trials in a larger time window (800 ms) around go cue (red arrow). Oscillations are not visible in the raw data

(top) or after shift warping (second from top). Oscillations are recovered by either linear (second from bottom) or piecewise linear warping (bottom). Shaded gray

region denotes upper and lower quartiles.
can generalize and make accurate predictions about other time

series (e.g., LFP) with qualitatively distinct statistics from the

training data (e.g., spike times).

We wondered whether time warping would fail to recover

these oscillations if the movement-related spiking, which occurs

at a much higher firing rate than pre-movement activity, was

included in the analysis. To examine this, we fit warping models

to a larger time window ( ± 400 ms around go cue presentation).

Time warping was still able to extract oscillations under these

more challenging circumstances (Figure 5F). Interestingly, a

shift-only model was no longer sufficient to capture oscillatory

activity, suggesting that the oscillations were not phase locked

to movement onset. In contrast, linear or piecewise linear warp-

ing functions were able to recover the oscillations (Figure 5F,

bottom). Thus, while the shift-only model is simplest to interpret,

it may be insufficient to capture certain results. This demon-
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strates the utility of exploring a range of time warping models

with varying levels of complexity on the same dataset.

Detection of �6–7 Hz Oscillations in Rat Motor Cortex
We have seen that time warping can reveal interpretable struc-

ture, even under well-controlled experimental conditions.

Discrete reaching, for example, is arguably the simplest volitional

motor behavior that one can study, and yet straightforward

behavioral alignments obscure salient spike-time oscillations

(Figure 5). To study a more complex behavior, in a different ani-

mal model, we analyzed motor cortical activity in rats trained to

produce a timed motor sequence (Kawai et al., 2015; Dhawale

et al., 2017). Rats were trained to press a lever twice with a target

time interval of 780 ms and were rewarded if the sequence was

completed within ± 80 ms of this target (Figure 6A). While rats

produce stereotyped motor sequences in this setting, the



Figure 6. Shift-Only Time Warping Reveals Temporally Precise Theta-Locked Oscillations in Rat Motor Cortex

(A) Rats were trained to press a lever twice with a prescribed delay. The range of inter-press intervals across trials is listed (median ± inter-quartile range).

(B) Raster plots for six representative cells with spike times aligned to the first lever press (blue line) and trials sorted by second lever press time (red line).

Histograms at the bottom denote the distribution of the lever press times.

(C) Same as (B) but with time aligned to the second lever press.

(D) Same as (B) but with time linearly re-scaled to align both lever presses. The missing scale bar reflects the fact that time units are no longer preserved across

trials.

(E) Same as (B) but with trials re-ordered by the magnitude of shift warping. The time of the second lever press on each trial is denoted by a semi-transparent

red dot.

(F) Same as (E) but with the time axis aligned by shift-only warping.

(G) Relationship between the magnitude of shift warping and inter-press interval on each trial. Dashed red line denotes a robust linear regression fit (Huber loss

function, ε = 1:001); the Median Absolute Deviation (MAD) and R2 are listed as measures of fit.
duration between lever presses and the timing of intermediate

motor actions is variable from trial to trial. We examined a data-

set consisting ofN= 30 neurons andK = 1,265 trials (3 recording

sessions, collected over a 2-day period). In these sessions, the

interval between lever presses ranged from 521 to 976 ms (5th

and 95th percentiles) across trials.

This experiment has three obvious alignment procedures:

align spike times to the first lever press, align spike times to

the second lever press, or linearly stretch and/or compress the

spike times to align both lever presses across trials (i.e., hu-

man-supervised time warping). Figures 6B–6D show the activity

of six example neurons under these alignment strategies. At a

high level, these raster plots demonstrate that neurons preferen-

tially respond to different behavioral events within a trial. For

example, cell 1 in Figure 6 fires after the second lever press,

while cell 6 in Figure 6 fires after the first press. Thus, it is not

obvious which alignment is preferable, and indeed different in-

sights may be gained from analyzing each.

Unsupervised time warping revealed structure in the data that

is hidden in all three behavioral alignments. A shift-only warping
model uncovered strong oscillations in many neurons, as visual-

ized either by re-sorting trials based on the learned shift (Fig-

ure 6E, same alignment as Figure 6B), or by using the model to

re-align spike times (Figure 6F). These findings are not due to

spurious alignments produced by an overfit model; each spike

raster in Figure 6F was generated on held-out data as

diagrammed in Figure 2K. Linear and piecewise linear timewarp-

ing recovered qualitatively similar oscillations (data not shown)

and were not superior to the shift-only model in terms of cross-

validated performance (Figure S4).

These results reveal a partial decoupling of behavioral events

(lever presses) with neural firing patterns. After alignment, both

the first and second lever presses occur at variable times within

each trial (Figure 6F, histograms at bottom), and the learned

shift on each trial only loosely correlated with inter-press inter-

val (Figure 6G). Furthermore, while multiple neurons exhibited

spike oscillations, these oscillations were out-of-phase across

neurons and therefore not visible in single-trial raster plots (Fig-

ure S4). Taken together, these features of the data suggest that

it would be difficult to discover this oscillatory structure by
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manual alignment, demonstrating the power of unsupervised

time warping.

While the uncovered oscillations are not phase locked with

lever press times, they are nonetheless correlatedwith certain as-

pects of the animal’s behavior. In particular, some cells only

exhibit the �6–7 Hz oscillation following the first lever press

with remarkable temporal precision (see cells 3 and6 inFigure6F).

Indeed, multiple cells exhibit non-oscillatory firing prior to the first

lever press but rapidly switch to an oscillatory behavior following

the lever press (see cell 3 in Figure 6F and Figure S5). Other cells

exhibit oscillations prior to the first lever press, but the amplitude

and precision of the oscillations appear to improve following the

first lever press (see cell 4 in Figure 5F). Still, other cells either

do not exhibit oscillations (cell 1 in Figure 6F) or exhibit strong os-

cillations both prior to and following the first lever press (cell 5 in

Figure 6F). Timewarping enables us to discover and visualize this

full spectrum of functional cell types, which are otherwise difficult

to detect and characterize. The presence of oscillations in single

neurons can be confirmed by plotting the distribution of inter-

spike-intervals (Figure S5); the shift-only model goes beyond

this method by demonstrating that a large population of neurons

are coherently phase shifted on a trial-by-trial basis and by

enabling characterization of the full population dynamics and

behavioral events in an aligned temporal space.

We then examined whether these spike-level oscillations were

aligned with oscillations in LFP. The average frequency spec-

trum of the LFP did display a prominent peak at �6–7 Hz, a

very similar frequency range to the spike-level oscillations iden-

tified in Figure 6. To characterize the relationship between these

two oscillatory signals, we band-passed filtered the LFP be-

tween 5 and 9 Hz on each trial and fit a separate shift-only

time warping model to the LFP traces. The time warping func-

tions learned on LFP data did not uncover the spike-time oscilla-

tions shown in Figure 6, and, likewise, the LFP signals were not

well aligned by the time warping functions fit to spike times (Fig-

ure S6). Thus, unlike the oscillations identified in primate premo-

tor cortex, the oscillations in rat motor cortex were not aligned

with the LFP.

DISCUSSION

While the temporal precision of neural coding has been a matter

of intense debate, few studies have leveraged statistical align-

ment methods to investigate this problem. Earlier work incorpo-

rated time warping into single neuron encoding and decoding

models (Aldworth et al., 2005; Gollisch, 2006; Smith and Panin-

ski, 2013; Lawlor et al., 2018), as well as dimensionality reduction

methods (Poole et al., 2017; Duncker and Sahani, 2018). Here,

we decoupled time warping from these other modeling objec-

tives to achieve a flexible and simplified framework.We surveyed

a broader range of datasets than past work, spanning multiple

model organisms, brain areas, and sensory or motor tasks. In

all cases, we found that the simplest and most interpretable

models—often those with shift-only or linear warping func-

tions—matched the performance of more complex models while

uncovering striking and sometimes unanticipated dynamics.

Our results suggest that shift-only and linear warping models

can match or even outperform more complex nonlinear warping
256 Neuron 105, 246–259, January 22, 2020
methods. These simpler models have three attractive properties.

First, they manipulate model estimates of single-trial firing rates

in a more interpretable manner (see Figure 1), enabling explor-

atory data analysis and visualization. Second, we developed effi-

cient and scalable optimization methods for this class of models.

On a modern laptop, these models can typically be fit to data

from 1,000 neurons, 100 time points, and 1,000 trials in 1 min

or less. This scalability is of great practical importance given

the increasing scale of neural recordings (Stevenson and Kord-

ing, 2011) and the growing need for rigorous cross-validation

and model comparison methods (Chandrasekaran et al., 2018),

which are often computationally intensive, if not prohibitive.

Indeed, another contribution of this work is the development of

cross-validation procedures to compare the performance of

time warping models ranging from simple (shift-only) to more

complex (piecewise linear; see Figures 2I–2K). In essence, this

enables a data-driven determination of the questions we posed

in the introduction of this manuscript: should spike times be re-

ported in absolute clock time, relative time between two behav-

ioral events, or something else? Though the answer to this

question will depend on the particulars of the experimental

context, time warping may be used to rigorously compare these

possibilities on a case-by-case basis.

Time warping also uncovered firing patterns that were not

aligned to any stimulus or measured behavior. For example,

we observed �13–40Hz spike time oscillations in primate pre-

motor cortex during movement preparation (see Figure 5), which

we then verified were phase aligned with LFP (see Figure S3).

Similar non-phase-locked oscillations have been previously

observed in functional neuroimaging experiments (Makeig

et al., 2002; David et al., 2006). Notably, the timewarpingmodels

we used did not assume any oscillatory structure in the data and

thus provide strong evidence that spike-level oscillations are a

salient feature of the dynamics. When an oscillation is uncov-

ered, a linear time warping model considers the activity of the

full neural population to estimate the changes in the phase (y

intercept) and frequency (slope) of the oscillation on a trial-by-

trial basis. This population-level approach can be contrasted

with popular frequency-domain statistical measures like coher-

ence, which measures the degree of phase synchronization be-

tween two spike trains or between a single spike train and LFP

(Fries et al., 1997). These pairwise analysis methods are likely

more sensitive to noise in single neurons than the population-

level models we investigated here; future work could explore

the relative advantages and disadvantages of these approaches

and develop new methods that combine desirable elements

from both.

Oscillatory spike patterns may not always be synchronized to

LFP, as we observed in rat motor cortex (see Figure 6). These

�7 Hz oscillations were sometimes gated by a motor action—

specifically, the first lever press—thus suggesting a potential

relevance to timed motor production (Figure S5). Another possi-

bility is that orofacial behaviors such as whisking and licking are

the primary driver of these oscillations (Hill et al., 2011). Other

work has shown that persistent �7 Hz LFP oscillations may be

locked to the respiration cycle (Tort et al., 2018); however, the

transient, spike-level oscillations we observed were decoupled

from LFP and are thus potentially distinct from this phenomenon.



Regardless of their root cause, this result demonstrates the

ability of time warping to extract unexpected features of scienti-

fic interest from high-dimensional spike trains. Further work is

needed to confirm and fully elucidate the properties of these

oscillations.

Timewarping is only one form of variability exhibited by single-

trial neural dynamics. For simplicity, we examined time warping

in the absence of other modeling assumptions, such as trial-to-

trial variation in amplitude (Bollimunta et al., 2007; Williams et al.,

2018) or condition-specific changes in dynamics (Duncker and

Sahani, 2018). Nonetheless, the models described here could

be extended in several ways to capture more complex single-

trial dynamics. First, we made the restrictive assumption that

all neurons share the same time warping function on each trial.

Under more complex experimental conditions—e.g., in large-

scale recordings of multiple brain regions—it may be fruitful to

fit multiple time warping functions associated with different neu-

ral sub-populations. Second, we fit only a single response tem-

plate for each neuron. Relaxing this assumption may be useful

in situations where neurons exhibit more than one canonical

response pattern. Finally, we assumed that neural data were

collected over repeated trials. To accommodate more unstruc-

tured experimental designs, future work could incorporate time

warping into state space models (Macke et al., 2015) or

sequence extraction algorithms (Mackevicius et al., 2019).

Despite these exciting prospects for future statistical methodol-

ogy, our work demonstrates that even a simple time warping

framework can provide a rich and practical set of tools for the

modern neuroscientist.

While our results already show that averaging over short,

stereotyped trials can obscure fine temporal oscillations and

firing events, these shortcomings are undoubtedly more se-

vere in behaviors that have longer temporal extents and

exhibit more variability. Thus, we expect time warping

methods to play an increasingly crucial role in neural data

analysis as the field moves to study more complex and un-

structured animal behaviors (Krakauer et al., 2017). Further-

more, in complex experimental tasks involving large numbers

of conditions and exploratory behaviors, the same motor act

or sensory percept may present itself only a small number of

times. In this trial-limited regime, precise data alignment may

be critical to achieve the necessary statistical power to make

scientific claims. We expect simple models, such as linear

and piecewise linear warping, to perform best on these

emerging datasets due to their interpretability, computational

efficiency, and robustness to overfitting.
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further requests for resources should be directed to and will be fulfilled by the Lead Contact, Alex H. Williams (ahwillia@stanford.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse Olfactory Task
Experimental subjects were male C57B/6 mice (Jackson Laboratories). All procedures were approved by the Institutional Animal

Care and Use Committee of New York University Langone Medical Center.

Primate Motor Task
Experimental subjects were twomale rhesusmacaquemonkeys (Macaccamulatta), denotedmonkey J andmonkey U. Themonkeys

were 13 (J) and 7 (U) years old and weighed 16 kg (J) and 13 kg (U) at the time of these experiments. All procedures and experiments

were reviewed and approved by the Stanford University Institutional Animal Care and Use Committee.

Rat Motor Task
Experimental subjects were female Long Evans rats, 3-8 months old at the start of the experiment (Charles River). All procedures and

experiments were reviewed and approved by the Harvard Institutional Animal Care and Use Committee.

METHOD DETAILS

Mathematical Notation
We follow the same notation introduced in the main text. Matrices are denoted in bold, uppercase fonts, e.g., M, while vectors are

denoted in bold, lowercase fonts, e.g., v. Unless otherwise specified, non-boldface letters specify scalar quantities, e.g., S or s. We

use Mu and M�1 to denote the transpose and inverse of a matrix, respectively.
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We consider a dataset consisting of N features over K trials with T timesteps per trial. For simplicity, we refer to N as the number of

neurons in the dataset; however, N could also refer to the number of fMRI voxels, multiunits, or regions of interest in imaging data.

The full dataset is a third-order tensor (a three-dimensional data array) with dimensions K3 T 3N. The kth slice of the data tensor is a

T3N matrix Xk , which represents the activity of the neural population on trial k. We denote a single element of the tensor as Xk;t;n,

which specifies the activity of neuron n at timebin t on trial k.

The time warping model produces an estimate of population activity on each trial. Mirroring standard notation in linear regression,

we denote the model estimate on trial k as bXk (a T3N matrix).

Model Estimate and Template Interpolation Scheme
Themain idea behind timewarping is to approximate each trial,Xk , as awarped version of a T3N template, ~X, that is shared across all

trials. For neuron n, at time bin t, on trial k, the spirit behind the model is:bXk;t;n = ~Xuk ðtÞ;n (Equation 3)

However, this expression is only valid when the warping function,ukðtÞ, produces integer values. To allow the warping functions to pro-

duce non-integer values, we adopt a standard linear interpolation scheme. Let ukðtÞ denote the time warping function for trial k. The

inputs to the warping function are integer-valued time indices t (clock time), and the outputs are any real number (aligned time). We as-

sume thatukðtÞ is monotonically increasing and thus invertible. Then, themodel estimate for neuron n, at time bin t, on trial k is given by:bXk;t;n = ðdukðtÞe�ukðtÞÞ ~Xbuk ðtÞc;n+ ðukðtÞ� bukðtÞcÞ ~Xduk ðtÞe;n (Equation 4)

where P:R represents the ‘‘flooring’’ operation, and d:e represents the ‘‘ceiling’’ operation. Because the model estimate (Equation 4) is a

linear combinationof ~Xbuk ðtÞc;n and
~Xduk ðtÞe;n, thewarping transformationcanbe representedasamatrixWwith nonzero elementsgivenby:

Wt;duk ðtÞe = ukðtÞ � bukðtÞc
Wt;buk ðtÞc = dukðtÞe � ukðtÞ (Equation 5)

For each trial, the warping matrixWk can be uniquely determined from the warping function uk . Thus, the model estimate on each

trial is given by: bXk = Wk
~X (Equation 6)

Optimization Strategy
The model template and warping functions are optimized to minimize an objective function, which we denote as Fð~X;u1;u2;.;uKÞ.
We assume that this objective function decomposes across trials as follows:

F
�
~X;u1;u2;.;uK

�
=
XK
k = 1

fk

�
~X;uk

�
+ r1

�
~X
�

(Equation 7)

Here fk is a function defining themodel loss on trial k, and r1 is a regularization term, penalizing the roughness and size of the template

(described in the next section). Our online code package supports least-squares and Poisson loss functions; we adopted the least-

squares criterion for the purposes of this paper due to its computational efficiency and its ability to be adapted to non-spike time data

(e.g., fMRI or calcium imaging). Under this choice, the per-trial loss function is:

fk

�
~X;uk

�
= kWk

~X� Xk k 2

F + r2ðukÞ (Equation 8)

Here, r2 is a regularization term that penalizes the magnitude of warping (described in the next section), and k, k 2
F denotes the

squared Frobenius norm, which is simply the sum of squared residuals, kM k 2
F =

P
ijM

2
ij .

To minimize F, we adopt an alternating optimization (block coordinate descent) approach (Wright 2015). First, each warping func-

tion is initialized to be the identity,ukðtÞ = t, and the template and warping functions are cyclically updated according to the following

sequence of optimization subproblems:

~X)arg min
~X

F
�
~X;u1;.;uK

�
u1)arg min

u1

F
�
~X;u1;.;uK

�
«

uK)arg min
uK

F
�
~X;u1;.;uK

�
(Equation 9)
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Here, an underlined variable denotes a dummy variable that is optimized over in each subproblem. This sequence of parameter up-

dates is cyclically repeated until the objective value ceases to improve; by construction, the objective monotonically decreases at

each step of the algorithm so convergence is guaranteed under mild assumptions (Wright 2015).

Partitioning the parameter updates in thismanner is useful because each subproblem can be solved very efficiently. When the tem-

plate is considered a fixed variable, the objective function decouples across trials (Equation 8), which simplifies the warping function

updates considerably:

uk) arg min
uK

fk

�
~X;uk

�
(Equation 10)

These parameter updates are entirely independent, with each update only depending on the raw data for trial k, Xk , and the current

warping template ~X. Our code package executes them efficiently in parallel across CPU threads. Furthermore, each warping function

is controlled by a small number of parameters in our framework—at best a single parameter (shift-only warping) and at worst only a

few parameters (piecewise linear warping). Thus, we perform these updates by a brute force random search (see Warping Function

Regularization and Update Rule).

The response template is also very simple to update, especially under a least-squares loss criterion. Assume for the moment that

the model is not regularized; i.e., r1ð~XÞ= 0 and r2ðWkÞ = 0. Then, because eachWk is held constant, updating the template amounts

to a least-squares problem that can be solved in closed form:

arg min
~
X

XK
k = 1

kWk
~X� Xk k 2

F
= arg min

~
X

k X
k

Wu
k Wk

!
~X�

 X
k

Wu
k Wk

! k 2

F

=

 X
k

Wu
k Wk

!�1X
k

Wu
k Wk

(Equation 11)

Furthermore the matrix
PK

k = 1WkW
u
k is a symmetric, tridiagonal matrix. Intuitively, this tridiagonal structure arises from the constraint

that each warping function is monotonically increasing, and the local structure of the linear interpolation scheme: for any warping

matrix W, with an associated warping function u, Equation 4 implies that Wi;tWj;t = 0 if juðtÞ�i j > 1 or if juðtÞ�j j > 1 and thus

½WTW�i;j = 0 if ji � j j > 1.

The tridiagonal structure of
P
k

Wu
k Wk enables the template parameters to be updated extraordinarily fast for practical applications.

We use a specialized solver for systems of linear equations with banded, symmetric structure (scipy.linalg.solveh_banded). This al-

lows the optimization problem in Equation LABEL:eq:unregularizedtemplate to be solved with OðTNÞ operations. IfP
k

Wu
k Wk were

naively treated as a dense matrix, the solution would instead require OðT3 +T2NÞ operations.

Template Regularization and Update Rule
We found that introducing regularization (penalties on the magnitude or complexity of model parameters) can improve the interpret-

ability of the model and its ability to predict held out data. First, we found in some datasets that the warping template could exhibit

rapid, high-frequency changes in firing rate (see, e.g., the template in Figure 1C, bottom panel, which was fit without regularization).

These irregularities likely correspond to the model overfitting to noisy neuronal data, and can be discouraged by penalizing the

magnitude of the second finite differences along the temporal dimension of the template (Grosenick et al., 2013; Maheswaranathan

et al., 2018).We refer to this term as a roughness penalty or smoothness regularization. Second, it is possible that thematrix
P
k

Wu
k Wk

appearing in Equation (11) would become non-invertible or ill-conditioned during optimization. To prevent this, and to discourage the

template firing rates from becoming too large, we added a penalty on the squared Frobenius norm of the template. Formally, the reg-

ularization on the template is given by:

r1

�
~X
�
= lkD~X k 2

F +gk~Xk2
F

(Equation 12)

where l> 0 controls the strength of the roughness penalty and g> 0 controls the strength of the Frobenius norm penalty. ThematrixD

is a ðT �2Þ3T matrix that computes second-order finite differences:

D =

2664
1 �2 1 0 . 0
0 1 �2 1 «
« 1 0
0 . 0 1 �2 1

3775 (Equation 13)
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Incorporating this regularization term into the update of the warping template (Equation (11)), we get:

arg min
~
X

k X
k

Wu
k Wk

!
~X�

 X
k

Wu
k Wk

! k 2

F

+ lkD~X k 2

F
+gk~X k 2

F

= arg min
~
X

k X
k

Wu
k Wk + lDuD+gI

!
~X�

 X
k

Wu
k Xk

! k 2

F

(Equation 14)

Which yields the template update rule:

~X)

 X
k

Wu
k Wk + lDuD+gI

!�1X
k

Wu
k Xk (Equation 15)

Thus, the solution is the same as before except a term lDuD+gI is added to the inverted matrix (left-hand side of linear system).

These modifications hardly affect the computational complexity of the parameter update since lDuD+gI is also a symmetric,

banded matrix. Furthermore, as long as g> 0 the overall matrix is positive definite and therefore guaranteed to be invertible.

In practice, we have found that it is simple to hand-tune the regularization strengths for exploratory analysis (though cross-valida-

tion procedures, described below, should always be used to monitor for overfitting). We typically set the L2 regularization (g) to be

zero or very small (e.g., 1e-4) and do not tune it further. A reasonable value for the roughness penalty scale can be found by visually

inspecting the template for various neurons (columns of ~X) and increasing l if these time series appear noisy.

Warping Function Regularization and Update Rule
We found that the optimization landscape of linear and piecewise linear warping functions is complex and full of local minima. Thus,

gradient-based optimization methods can be ineffective. Thankfully, the warping functions are (a) low-dimensional and (b) entirely

decoupled across trials. Thus, when updating the warping functions, we perform a brute force parameter search for each trial in par-

allel. For shift-only warping models, we perform a dense grid search over the parameter (the magnitude of the shift).

For piecewise linear warping models we perform an annealed random search as follows. Consider a warping function ukðtÞ for any
arbitrary trial. We parameterize the warping function as:

ukðtÞ = 1+ ðT � 1Þ$P~uk

�
t � 1

T � 1

�
e10 (Equation 16)

where ~uk is a piecewise linear function mapping the unit interval ½0; 1� to any real number, and Pze10 =maxðminðz; 1Þ;0Þ denotes clip-

ping any real number z to have a value between zero and one.

The piecewise linear function ~ukðtÞ intuitively defines the ‘‘unclipped’’ warping function for trial k. We define these functions by a

series of M x-y coordinates, fða1;b1Þ;ða2;b2Þ;.ðaM;bMÞg, where 0=a1 <a2 <.<aM = 1 and b1%b2%.%bM. We refer to these co-

ordinates as the knots of the warping function.

~ukðtÞ =

8>>>>>>>>>>><>>>>>>>>>>>:

b1 if t =a1 = 0

b1

�
1� t � a1

a2 � a1

�
+ b2

�
t � a1

a2 � a1

�
if a1 < t <a2

« «

bM�1

�
1� t � aM�1

aM � aM�1

�
+ bM

�
t � aM�1

aM � aM�1

�
if aM�1 < t <aM

bM if t =aM = 1

(Equation 17)

Note that the warping function for each trial has a different set of knots; however, we have suppressed the trial index variable k on the

knot coordinates (am and bm) for notational brevity.

To optimize the warping functions we perform a random search over these coordinates/knots. Let a= ½a1;a2;.;aM� and b=

½b1;b2;.; bM� denote the current coordinates for any particular trial. We form a new proposed warping function by:

a0)sortða+QhÞ
a0)

�
a0 � a0

1

���
a0
M � a0

1

�
b0)sortðb+QhÞ

(Equation 18)

whereQ> 0 is a scalar parameter tuning the amount of exploration, and h is a vector of random normal variables with mean zero and

unit variance. The procedure ‘‘sortðvÞ’’ re-orders the elements of a vector so that they are in ascending order. If the proposed warping

function improves the objective function, we accept the new parameters:
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a)a0
b)b0

For each round of optimization we exponentially relax Q from 1.0 to 0.01 over a fixed number of iterations.

We also found that penalizing the warping functions based on their distance from the identity line was helpful in some cases. Intu-

itively, this encourages the warping functions to be minimal—as the penalty strength increases the warping functions will approach

uðtÞ = t, resulting in no warping at all in this extreme limit. Similar penalties or hard constraints on time warping have been examined

in prior literature (see e.g., Zhang et al., 2017). We chose the penalty to be the area between the unclipped warping function and the

identity line:

r2ðWkÞ = m

Z 1

0

j~ukðtÞ� t jdt (Equation 19)

which, for piecewise linear functions with relatively small M, can be efficiently computed as the sum of triangular and trapezoidal re-

gions. Here, mR0 is a scalar hyperparameter controlling the strength of the penalty. In practice we start with m= 0 and increase it if,

upon visual inspection, the warping functions are highly deviant from the identity line. Increasing m in these cases can result in more

sensible and interpretable templates. Again, cross-validation procedures can be used to asses whether m is too low (resulting in over-

fitting) or too high (resulting in underfitting).

Synthetic data examples
In Figure 1 data from a single neuron was simulated as a difference of two exponential curves. The activity at T = 100 equally spaced

time points between ½�8; + 8� was given by:

xkðtÞ =
	

0 sk � t < 0
3:3,expððsk � tÞ=2Þ � expðsk � tÞ+ h sk � tR0

where sk was a random shift parameter drawn uniformly on the interval ½ � 5:5;3:5Þ, and hwas randomly drawn zero-mean Gaussian

noise with a standard deviation of 0.15. Unregularized shift-only, linear, and piecewise linear (with 1 knot) models were fit to K = 100

simulated trials. DTW-Barycenter Averaging (DBA; Petitjean et al., 2011) was fit to the same data using an open-source package

called tslearn (Tavenard, 2017).

In Figure 2 we simulated random warping warping functions following the procedure listed in Equation 18, with Q = :12. The firing

rate template of each neuron was given by a smoothed, sparse sequence of heavy-tailed random variables:

xðtÞ = 0:01+ convðbt , etÞ
where et were randomly drawn from an exponential distribution (with scale parameter equal to one) and bt were binary random vari-

ables drawn from a Bernoulli distribution (with probability of 0.92 that bt = 0). The convð,Þ procedure denotes convolution with a

Gaussian smoothing kernel with a standard deviation of 2. Truncated Poisson random variables were then drawn in each timebin;

any bins with more than two spikes were truncated to one spike.

Mouse Olfactory Task
We analyzed data from a single recording session collected as part of a previously published study (Wilson et al., 2017). Subjects

were implanted with a RIVETS headbar for head-fixation 7 days prior to the experiment (see description in Arneodo et al., 2018). Sub-

jects were water deprived prior to the experiment and were administered water during random odor presentations to acclimate an-

imals to the experimental apparatus.

On the day of experiment, subjects were anesthetized using isoflurane and a�0.3mmcraniotomywas preformed to gain access to

the dorsal olfactory bulb. NeuroNexus A2x32 probes were inserted approximately 500 mm into the dorsal bulb to record from the

mitral-tufted cell layer. After probe insertion, subjects were allowed to recover from anesthesia for 30 min prior to recording. Elec-

trophysiological and respiration signals were recorded using the HHMI Janelia Whisper recording system at 25000 Hz. Respiration

(sniff) was monitored non-invasively using a pressure sensor sampling from the airflow in front of the nose. Action potentials from the

recording were identified and classified into units offline using Spyking Circus template-matching software (Yger et al., 2018).

Two odors at 3 concentrations were presented in randomly interleaved trials. Subjects were passively sampling odor during trials.

Concentrations covered a range of 2 orders of magnitude of molarity in carrier air. Odorants were diluted in mineral oil, stored in

amber volatile organic analysis vials, and delivered via a 8-odor olfactometer. Odorant concentrations were controlled using a com-

bination of gas- and liquid-phase dilution. We restricted our analysis to subsets of trials with odorant concentrations of 10�2 dilution

from standard vapor pressure—the highest concentration analyzed in (Wilson et al., 2017).

Primate Motor Task
Monkeys performed a standard center-out delayed reach task described previously in (Gilja et al., 2012; Ames et al., 2014).

Targets were presented at (40, 80, 120) cm and 90 cm from the central starting location for monkeys J and U respectively. For
e5 Neuron 105, 246–259.e1–e8, January 22, 2020



monkey J, delay periods were evenly distributed between 300 and 700 ms (monkey J) with �4.5% non-delay trials randomly inter-

leaved. For monkey U, delays were randomly distributed between 350 and 600 ms on 87% trials, between 5 and 350 ms on 10%

of trials, with 3% non-delay trials. Monkeys received a liquid reward upon touching and holding the cursor on the target. Move-

ment during the delay period caused a trial failure and provided a brief automated time out (�1 s). Non-delay trials were not

analyzed.

For monkey J, the virtual cursor and targets were presented in a three-dimensional environment (MusculoSkeletal Modeling Soft-

ware, Medical Device Development Facility, University of Southern California). Hand-position data were measured at 60 Hz with an

infrared reflective bead–tracking system (Polaris, Northern Digital). Behavioral control and neural decode were run on separate PCs

using the Simulink/xPC platform (Mathworks) with communication latencies of less than 3ms. This system enabledmillisecond timing

precision for all computations. Visual presentation was provided via two LCDmonitors in aWheatstone stereotax configuration, with

refresh rates at 120 Hz, yielding frame updates of 7 ± 4 ms. Two mirrors visually fused the displays into a single three-dimensional

percept for the user, as described previously in (Gilja et al., 2012).

For monkey U, the virtual cursor and targets were presented on a standard 2D display. The monkey controlled the position of an

onscreen cursor using a haptic manipulandumwhich applied no additional forces applied to the arm and was only used for positional

cursor control. The haptic device was constrained to move within a 2D vertical workspace and cursor position tracks hand position

1:1 without perceptible lag.

Neural recordings were obtained via implanted 96-electrode Utah Microelectrode arrays (Blackrock Microsystems) using stan-

dard neurosurgical techniques. Two arrays were implanted in the left hemisphere of Monkey J, one in dorsal premotor cortex

(PMd) and one in primary motor cortex (M1). Three arrays were implanted in the left hemisphere of Monkey U, one in PMd,

one in medial M1, and one in lateral M1. For both monkeys, implantation location was estimated visually from local anatomical

landmarks.

Neural data were band-pass filtered between 250-7500Hz, and processed to obtainmultiunit ‘threshold crossings’ spikes, defined

as any time the signal crosses�3.5 times RMS voltage. We did not perform spike sorting, and instead grouped together the multiple

neurons present on each electrode. As such, we anticipate that these population recordings contain both single andmultiunit activity.

For Figure 4 and Figure S2 (Monkey J), each trial was defined as the 1200 ms following the reach target onset. Spike times were

binned in 5 ms increments. For Figure 5 (Monkey U) and Figure S3 (Monkey J), we aligned spike times to the go cue instead of target

onset. To highlight oscillatory spiking activity, we defined each trial as the period occurring 400ms prior to go cue and 100ms after go

cue. Spike times were binned in 2.5 ms increments for Monkey J and 5 ms increments for Monkey U; similar results were found for

smaller bin sizes, and stronger smoothness regularization. In Figure 5F (Monkey U), we extended each trial duration to ± 400 ms

around the go cue, but otherwise kept the same parameters.

Tuning the regularization strength of on template smoothness (l) and warpmagnitude (m) was important to uncover the oscillations

in premotor cortex. We used the cross-validation procedure described above to determine roughly appropriate values for these pa-

rameters. To be conservative and to be confident that these results were not due to overfitting, we increased the regularization

strength further for the purposes of visualization.

Rat Motor Task
We analyzed data that was collected as part of a previously published study (Dhawale et al., 2017), which describes all experimental

procedures and data collection protocols in greater detail. Extracellular recordings were obtained from 16 chronically implanted tet-

rodes in the motor cortex. Signals were amplified and digitized on a customized head-stage, and sampled at 30 kHz. The head stage

was attached to a custom-designed tethering system that allowed the animal to move freely within its cage. Before implantation, an

automated behavioral training framework (described in Poddar et al., 2013) was used to train the rats on a timed lever-pressing task

(described in Kawai et al., 2015) until asymptotic performance was achieved.

The tetrode drive was then surgically implanted and targeted to motor cortex, through a 4-5 mm diameter craniotomy made 2 mm

anterior and 3 mm lateral to bregma. The tetrode array was lowered to a target depth of 1.85 mm. At the end of the experiments, the

position of the electrodes was verified by standard histological methods—brains were fixed via transcardial perfusion (4% parafor-

maldehyde in phosphate-buffered saline, Electron Microscopy Sciences) and the location of the electrodes was reconstructed by

viewing mounted coronal sections (60 mm).

After 7 days of recovery post-surgery, training on the task resumed in the animal’s home cage. Neural and behavioral data was

recorded continuously during this time (12-16 weeks) with only brief interruptions (median time of 0.2 h). Spikes were sorted using

Fast Automated Spike Tracker (FAST), a custom algorithm designed for parsing long-term continuous neural recordings (for details,

see Dhawale et al., 2017). We examined K = 1265 trials, collected over a two day period.

Each trial was defined as the period starting 500 ms prior to the first lever press and 1500 ms after the first lever press. Spike

times were binned in 10 ms increments for each unit. Raw spike counts were provided to the time warping algorithm; however,

we observed similar results under various normalization schemes, such as soft-normalization (Churchland et al., 2012). All an-

alyses of these data used a shift-only time warping model. The per-trial shift was constrained to be less than 10% of the total

trial duration.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Cross-validation
Aswith any statistical method, onemust be very careful that timewarping does not reveal spurious structure and features of the data.

In Figure 1, we saw that even a simple linear warping model can result in noticeable overfitting on a simple synthetic time series. An

important technical contribution of our work is a rigorous cross-validation framework for time warping models. This framework,

described in detail below, enables us to fine-tune all regularization terms—i.e., the hyperparameters fg; l;mg—across all warping

models. That is, we can rigorously compare the performance of shift-only, linear, and piecewise linear time warping models on an

even footing, and thus critically examine the degree of nonlinearity in time warping. While cross-validation is a common procedure

in statistical modeling and in modern neuroscience, there are subtle pitfalls that must be avoided in unsupervised learning models

(Bro et al., 2008; Perry 2009), and in models with temporally correlated noise (Opsomer et al., 2001).

To properly compare the performance of different warping models, it is important to perform nested cross-validation, so that reg-

ularization terms are separately tuned for each model. For example, a piecewise linear warping model will often require stronger

smoothness and warp regularization terms, compared to a simpler, shift-only warping model. Thus, on each cross-validation run

we split the data in three partitions: a training set, a validation set, and a test set. For each model class (shift-only, linear warping,

piecewise linear warping, etc.) we fit 100 models with randomized regularization strengths to the training set; we then evaluated

all 100 models on the held out validation set; finally, the best-performing model was evaluated on the test set. The test set perfor-

mance is then compared across model classes. Model performance was measured by computing the coefficient of determination

ðR2Þ, averaged across neurons. Formally, for any partition of neurons N 4f1; 2;.;Ng and trials K 4f1; 2;.;Kg we define the co-

efficient of determination as:

R2 = 1�
P

n˛N
PT

t = 1

P
k˛K

�
Xk;t;n � bXk;t;n

�2
P

n˛N
PT

t = 1

P
k˛K

�
Xk;t;n � Xn

�2 (Equation 20)

where Xn = ð1 =TKÞPT
t = 1

PK
k = 1Xk;t;n is the average activation for neuron n.

Recall that our dataset consists of N neurons, T timebins, and K trials. The question then arises, should we hold out neurons, time

points, or trials during cross-validation? Since the warping functions are assumed to be shared across all neurons, these model pa-

rameters can be fit on a subset of neurons (training set), and then evaluated on held out neurons (validation/test sets). However, if we

hold out individual neurons entirely, then it is impossible to fit the response template matrix ~X for those cells. Conversely, the

response template can be fit to a subset of trials (training set) and evaluated on the remaining trials (validation/test sets). However,

if we hold out individual trials entirely, then it is impossible to fit the warping functions associated with those held out trials.

To circumvent this problem we adopt a bi-cross-validation hold out pattern (Owen and Perry, 2009). This entails separately and

independently partitioning neurons and trials. Thus, we randomly choose training neurons (�73% of all cells), validation neurons

(�13% of all cells), and testing neurons (the remaining �13%). Additionally, we randomly choose training trials, validation trials,

and testing trials, according to these same ratios. The model warping functions are fit to all trials, but only on the training neurons;

the response template is fit for all neurons, but only on the training trials. When reporting the training performance, we compute the

reconstruction loss on the intersection of the training neurons and training trials. Likewise, when evaluating models on the validation

(or test) set, we compute the the reconstruction loss on the intersection of the validation (or test) neurons and validiation (or test) trials.

Temporal dependencies in model errors can complicate proper cross-validation (Opsomer et al. 2001). To avoid these complica-

tions, we leave out entire trials for individual neurons, rather than leaving out a subset of time bins.

Null models and other sanity checks
The cross-validation procedure described above is fully rigorous, but computationally expensive to perform. Even if each optimiza-

tion run only takes a few seconds to complete, comparing M warping models over P random samples of the regularization

parameters, and repeating the whole process over Q randomized folds leads to long run times; for example, �26 h for M = 5,

P = 100, Q= 50 and each model taking �20 s to optimize. This rather unfavorable scaling underscores why our attention to perfor-

mance enhancements—e.g. by exploiting banded matrix structure when updating the model template—is critical for practical appli-

cations. On the other hand, a full cross-validation run is often unnecessary for exploratory data analysis and visualization. Here we

briefly outline two simple procedures for validating timewarping visualizations in amore interactivemanner. Our online code package

also supports both of these options.

First, one can create a very simple null dataset of neural activity that, by construction, contains no warping. By comparing the

results of time warping on this null dataset to those achieved on the real data, we gain an informative reference point. For spiking

data, we simulate null data by computing the trial-average firing rate of each neuron and then drawing Poisson i.i.d. random spike

trains on every trial. That is, on each trial, the spike train for a neuron is drawn from an inhomogeneous Poisson process, with a

rate function given by the trial-average firing rate. Similar baselines could be developed for calcium imaging and fMRI studies after

specifying an appropriate noise model. We did not apply this method directly in this manuscript, but nonetheless mention it here

for completeness.
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Second, a key visualization tool enabled by time warping is the alignment of neural activity across trials. This alignment is achieved

by applying the inverse warping functions to re-scale the time axis on the raw data; it does not directly rely on the response template,
~X. Thus, one can visualize the aligned activity of an individual neuron in a held out manner—the model is fit to all trials and all other

neurons, and the warping functions are applied to the held out cell (see Figure 2K). This can then be repeated for each neuron in the

full population. All spike raster plots in the main paper were produced using this procedure.

While these two approaches do not supplant the need for careful cross-validation, they can provide a quick validation for visual-

izations and presented results.

DATA AND CODE AVAILABILITY

Our code for fitting linear and piecewise linear time warping models is distributed as a GitHub repository (under an MIT license):

https://github.com/ahwillia/affinewarp. This repository also contains pre-processed versions of all three experimental datasets

detailed in this paper, alongside step-by-step tutorials which reproduce the major results in Figures 2, 3, 5, and 6. Our Python im-

plementation relies on the standard SciPy scientific computing libraries (Jones et al., 2001–; Hunter, 2007). Additionally, we achieved

substantial performance enhancements by leveraging numba, a Python library that enables just-in-time (JIT) compilation (Lam

et al., 2015).
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