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SUMMARY
Neurons in the medial entorhinal cortex alter their firing properties in response to environmental changes.
This flexibility in neural coding is hypothesized to support navigation and memory by dividing sensory expe-
rience into unique episodes. However, it is unknown how the entorhinal circuit as awhole transitions between
different representationswhen sensory information is not delineated into discrete contexts. Herewedescribe
rapid and reversible transitions between multiple spatial maps of an unchanging task and environment.
These remapping events were synchronized across hundreds of neurons, differentially affected navigational
cell types, and correlated with changes in running speed. Despite widespread changes in spatial coding, re-
mapping comprised a translation along a single dimension in population-level activity space, enabling simple
decoding strategies. These findings provoke reconsideration of how the medial entorhinal cortex dynami-
cally represents space and suggest a remarkable capacity of cortical circuits to rapidly and substantially
reorganize their neural representations.
INTRODUCTION

As an animal engages in complex behaviors, it must dynamically

integrate external sensory features with internal behavioral state

changes. Arousal (Hulse et al., 2017; Salay et al., 2018; Vinck

et al., 2015), satiety (Jennings et al., 2019), attention (Kentros

et al., 2004), and running speed (Bennett et al., 2013; Hardcastle

et al., 2017; Hulse et al., 2017; Niell and Stryker, 2010; Vinck

et al., 2015) can affect cortical processing and influence how

an animal interacts with its surroundings (Calhoun et al., 2019;

Salay et al., 2018). As an animal navigates the world, encoun-

tering a continuous stream of sensory features while experi-

encing behavioral state changes, navigational centers in the

brain may integrate these external and internal factors to encode

unique episodes or contexts. The extent to which these naviga-

tional centers incorporate changes in an animal’s internal behav-

ioral state, as opposed to reflecting the external sensory features

in the world, remains incompletely understood.

One key navigational center is the medial entorhinal cortex

(MEC), which is hypothesized to support navigation andmemory

through neurons that encode the animal’s position and orienta-

tion relative to sensory features such as environmental bound-

aries and objects (Diehl et al., 2017; Gil et al., 2018; Hafting

et al., 2005; Høydal et al., 2019; Sargolini et al., 2006; Solstad

et al., 2008).When environmental features change,MECposition
and orientation cells can ‘‘remap’’ through changes in firing rate

and rotations or shifts in firing field locations (Barry et al., 2007;

Diehl et al., 2017; Fyhn et al., 2007; Keene et al., 2016; Krupic

et al., 2015; Marozzi et al., 2015; Munn et al., 2020; Solstad

et al., 2008). This flexibility in MEC neural coding is hypothesized

to be an integral part of navigational and memory processes. It

may also interface with a similar phenomenon in the hippocam-

pus (Fyhn et al., 2007), a neural substrate involved inmemory for-

mation, where neurons also remap in response to changes in

sensory features or task context (Bostock et al., 1991; Frank

et al., 2000; Jezek et al., 2011; Markus et al., 1995; Moita

et al., 2004; Muller and Kubie, 1987; Wood et al., 2000). Recent

work in the hippocampus has revealed remapping in response to

other latent factors, which may include changes in an animal’s

behavioral state (Keinath et al., 2020; Sheintuch et al., 2020;

Ziv et al., 2013), suggesting that the MEC may be responsive

to these factors as well. Consistent with this possibility, changes

in task demands can evoke MEC remapping (Boccara et al.,

2019; Butler et al., 2019). However, studies have yet to identify

the specific effect of latent factors such as behavioral state on

MEC remapping. Further, it is not yet known what MEC remap-

ping dynamics might look like when environmental features or

task demands are not delineated into distinct episodes.

Until recently, technological constraints limited most studies

to small numbers of simultaneously recorded MEC neurons. As
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Figure 1. Acute neuropixels recordings during a VR random foraging task

(A) Schematized recording setup.

(B) Schematized side view of the cue-rich (top, pink) and cue-poor (bottom, green) environments (colors maintained throughout).

(C) Running speed near rewards for an example 100 trials (gray traces, each trial; black line, average).

(D) As in (C) for smoothed lick count.

(E) Running speed in versus outside of reward zones (mean difference ± standard error of the mean [SEM], 11.7 ± 1.2 cm/s; Wilcoxon signed-rank test, p = 3.13

10�11) (points, individual sessions; for double-track sessions, color indicates which track was first).

(F) As in (E) but for fraction of licks (mean difference in lick number ± SEM, 8.0 ± 0.2; Wilcoxon signed-rank test, p < 1 3 10�11; N = 16,083 reward trials).

(G) Number of MEC units recorded in each session.

(H) Locations for all recorded MEC units relative to their dorsal-ventral (DV), medial-lateral (ML), and anterior-posterior (AP) location.

(I) Rasters (top) and tuning curves (bottom) for four example cells from one session (black lines, average firing rate; shading, SEM).

(J) Average spatial correlation of nearby trials (mean moving average correlation, 5 nearest trials ± SEM, 0.441 ± 0.009; mean spatial correlation range, 0.28–0.73)

(points, individual sessions; bars, individual mice; error bars, SEM across sessions). Double-track sessions show cue-rich and cue-poor blocks separately (26

blocks from 13 sessions).

(E–H and J) N = 10,440 cells in 67 sessions across 22mice. The example session in (C) and (D) ismouse 6a, session 1009_1, and in (I) ismouse 6a, session 1010_1.

See also Figure S1.
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a result, previous studies of flexibility in MEC neural coding often

focused on how the firing fields of single functionally defined

neurons (e.g., grid, border, or head direction cells) responded

to changing environmental features. However, not all MEC neu-

rons fall into discrete functional classes (Hardcastle et al., 2017;

Hinman et al., 2016), and many MEC coding properties are pro-

posed to emerge at the population level (Burak and Fiete, 2009;

Couey et al., 2013; Fuhs and Touretzky, 2006; McNaughton

et al., 2006; Ocko et al., 2018; Pastoll et al., 2013). These features

of MEC coding raise the question of how the MEC circuit as a

whole transitions between contextual representations.

Here we investigated how large populations of MEC neurons

transition between spatial representations in an invariant envi-

ronmental context. Using silicon probes, we simultaneously re-

corded from hundreds of MEC neurons while mice navigated a

virtual reality (VR) environment. We found that remapping events

occurred synchronously across the MEC population—recruiting

a large swath of cells with heterogeneous coding properties—

without any change in environmental features or task demands.

Further, we demonstrated that each map corresponded to a
2 Neuron 109, 1–14, September 15, 2021
distinct activity manifold. Running speed correlated with transi-

tions between these manifolds, and the manifolds for different

maps were geometrically aligned, which enabled consistent po-

sition decoding in spite of remapping. Our findings demonstrate

that a single population of neurons can preserve unchanging in-

formation (e.g., fixed environmental features) while also encod-

ing changes in internal context, demonstrating a remarkable

capacity for reliability and flexibility in MEC navigational coding.

RESULTS

Spatial representations remap in an invariant VR
environment
Head-fixed mice foraged for water rewards along an infinite VR

track with landmark cues that repeated every 400 cm (Campbell

et al., 2020; Figures 1A and 1B; Figure S1). 11 mice navigated a

cue-rich track (5 landmarks; Figure 1B, top; n = 43 sessions; i.e.,

cue-rich sessions), 6 mice navigated a cue-poor track (2 land-

marks; Figure 1B, bottom; n = 11 sessions; i.e., cue-poor ses-

sions), and 5 mice navigated alternating blocks of cue-rich and
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cue-poor trials within each session (n = 13 sessions; i.e., double-

track sessions). Mice could lick for water in a visually marked

reward zone, which appeared at random locations along the

track (Figure S1). In reward zones, mice slowed (difference in

running speed, 11.7 ± 1.2 cm/s; p = 3.1 3 10�11) and licked for

water (difference in lick number, 8.0 ± 0.2; p < 1 3 10�11),

demonstrating familiarity with the task (Figures 1C–1F).

To record neural activity during behavior, we acutely inserted

Neuropixels silicon probes (Jun et al., 2017) into the MEC for up

to six recording sessions per mouse (up to three sessions per

hemisphere). Each session was associated with a unique probe

insertion, and sessions from the same hemisphere were re-

corded in distinct parts of the MEC (Figure S1; STAR Methods).

Thus, we recorded simultaneously from hundreds of neurons

across a large portion of the MEC dorsal-to-ventral axis in indi-

vidual mice (N = 10,410 cells) (Figures 1G and 1H; Figure S1).

To quantify spatial coding stability across co-recorded neurons,

we estimated each neuron’s position-aligned firing rate on each

trial and computed the correlation between all spatial represen-

tations for each pair of trials (STAR Methods). Network-wide po-

sition coding was typically stable across neighboring trials (mov-

ing average correlation, 5 nearest trials: 0.441 ± 0.009; Figures

1I, 1J, and 2A; STAR Methods). In some cases, population-

wide neural representations appeared untethered from land-

marks for part or all of the session (interquartile range min to

max, 0.034–0.394; Figures S1 and S2).

To characterize the stability of population-wide spatial coding

across all trials for each session, we collected the spatial corre-

lations for all trial pairs into a trial-by-trial similarity matrix of

network-wide spatial representations (Figures 2B–2F, right; Fig-

ure S2). In many recording sessions, we observed clear changes

in these similarity matrices and in the spatial firing patterns of sin-

gle neurons distributed across the MEC (i.e., remapping events)

(Figures 2B–2F; Figure S2). These remapping events occurred

without any change to environmental sensory cues or task de-

mands. Importantly, remapping events did not reflect recording

probe movement (Figures S1 and S3). MEC cells often switched

abruptly between stable spatial representations (i.e., maps), with

cells returning repeatedly to one of several distinct maps within a

single session, resulting in a checkerboard pattern of trial-by-trial

similarity (Figures 2B–2F; Figures S1 and S2). In other sessions,

spatial representations underwent a single transition between

stable maps or transitioned between spatially stable and unsta-

ble coding regimes (Figures 2B and 2F; Figure S2). Although the

frequency and stability of remapping was thus heterogeneous

across mice and sessions, in all cases, remap events appeared

to recruit co-recorded neurons all along the dorsal-to-ventral

MEC axis (Figures 2B–2F, right; Figures S1 and S2).

Data-driven detection of network-wide remapping
To characterize neural remapping not related to changing visual

cues, we focused our main analysis on sessions from mice who

only experienced one of the two tracks (single-track sessions,

n = 54 sessions in 17 mice). Double-track sessions recapitulated

all major single-track findings, indicating that the general proper-

ties of network-wide remapping were consistent across different

VR tasks (Figure S4). To group trials with similar network-wide

spatial activity, we applied k-means clustering to each session
(Figure 3A). The k-means model assigns a single cluster label

to each trial, and these cluster labels often visibly matched the

checkerboard pattern in trial-by-trial similarity matrices (Fig-

ure 3B; Figures S2 and S5). Despite making the strict assumption

that each trial belongs to a single spatial map, a 2-cluster

k-means model consistently approached the performance of a

less constrained uncentered principal component analysis

(PCA) model, which allows each trial to contain a blend of multi-

ple spatial maps (Figure 3C). These results suggest that remap-

ping events were well approximated by discrete transitions be-

tween spatial maps.

Using the relative performance of k-means to PCA, we identi-

fied 28 of 54 single-track sessions that were adequately fit by a

2-cluster k-means model (Figure 3D; n = 23 cue-rich sessions, 5

cue-poor sessions; 4,984 cells; 13 mice). In many of these ses-

sions, neural activity repeatedly returned to the same set of

maps (13 of 28 sessions exhibited three or more remap events;

Figure S3). Trials within a given map were more similar to each

other than to trials from the other map (p = 3.79 3 10�6; Fig-

ure 3E). We focused subsequent analysis on these 28 ‘‘2-map

sessions’’ because they were the simplest and most common

case. The remaining 26 sessions showed heterogeneous remap-

ping that was not well captured by this two-factor model (Fig-

ure 2; Figures S1, S2, and S5).

How do these network-wide events recruit single neurons? In

2-map sessions, the majority of cells throughout the MEC

(82.4%) changed their firing properties in precise agreement

with population-derived remapping events (i.e., consistent re-

mappers, average distance to cluster centroid < 1; Figures 3B,

bottom, and 3F; STAR Methods). There was some regional vari-

ability in the proportion of these consistent remappers, but they

always comprised the bulk of the population (Figure 3F). Thus,

most MEC neurons remapped abruptly and synchronously.

Entorhinal neurons remap reversibly and
heterogeneously
We next investigated how remapping influences the coding

properties of single MEC neurons. In 2-map sessions, many sin-

gle neurons exhibited distinct spiking patterns and spatial tuning

curves within each k-means-identified map (Figure 4A; see Fig-

ure S5 for sessions with more than 2 maps). To quantify these

tuning changes, we calculated the change in peak firing rate

(i.e., rate remapping) and the spatial dissimilarity (i.e., global re-

mapping) across the twomaps for each cell (Knierim et al., 1998;

Muller and Kubie, 1987; O’Keefe and Conway, 1978; STAR

Methods). Across all cells (spatial and non-spatial), we observed

diverse remapping responses with no obvious clustering in type

of remapping (Figures 4B and 4C). Many cells showed some rate

remapping (median absolute change in peak firing rate, 1.28-

fold) but largely retained their spatial tuning across maps

(median spatial dissimilarity, 0.031; Figures 4A–4C). Neverthe-

less, the dissimilarity distribution was heavy tailed (Figure 4B),

indicating a subpopulation of cells with large changes in spatial

tuning across maps (5% of cells had a dissimilarity greater

than 0.223; e.g., Figures 4A and 4C, cool colors).

Cells also exhibited changes in spatial information across

the two maps (e.g., Figure 4D), resulting in many cells (13% ±

1%) that were significantly spatial in one map but not the other
Neuron 109, 1–14, September 15, 2021 3
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Figure 2. Spatial representations remap in an invariant VR environment

(A) Rasters (top) and tuning curves (bottom) for four example cells (40 example trials) from one session (black lines, average firing rate; shading, SEM; same as

Figure 1J).

(B) Full rasters (left) and network-wide trial-by-trial similarity matrix (right) from the same example session (arrowheads, transitions in spatial coding; colors

alternate light/dark for discernibility; color bar, trial-by-trial spatial correlation) (n = 142 cells).

(C and D) As in (B) but for a different example cue-poor (C; n = 227 cells) and cue-rich (D; n = 139 cells) session.

(E and F) As in (B)–(D) but for one double-track session split into cue-poor (E) and cue-rich (F) trial blocks (dashed lines indicate breaks between blocks;

n = 55 cells).

(B–F) Pink arrowheads indicate cue-rich tracks and green arrowheads cue-poor tracks.

See also Figures S2 and S3.
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(p < 0.05; Figure 4E). Cells with high spatial information in at least

one map were likely to remap in coordination with the rest of the

population (1,449 of 1,545 spatial cells; Figure 4F). Thus, remap-

ping reflected changes in the spatial coding properties of MEC

neurons and recruited most spatially informative cells.

Navigationally relevant cell types remap differentially
The MEC contains functional cell types that exhibit distinct

spatial coding statistics (e.g., grid, border, object vector, and

head direction cells) (Hafting et al., 2005; Høydal et al., 2019;

Kropff et al., 2015; Sargolini et al., 2006; Savelli et al., 2008; Sol-

stad et al., 2008), raising the question of how remapping recruits

these cell types. To investigate this question, we leveraged a

previous finding that grid cells are responsive to mismatches be-

tween visual and motor feedback in 1D VR, whereas border cells

remain stable (Campbell et al., 2018). In a subset of 2-map ses-

sions (n = 9 cue-rich sessions), we appended 5 trials in which the

mouse had to run twice as far to traverse the same visual land-

scape (i.e., gain mismatch) (Figure 5A). We classified spatially
4 Neuron 109, 1–14, September 15, 2021
stable cells that were highly responsive to gain mismatch as

putative grid cells (224 of 1,379 cells) and those that were unaf-

fected by gain mismatch as putative border cells (152 cells)

(Figures 5B–5D; Figure S6) (referred to here as grid and border

cells; STAR Methods). Using this metric, we found that the pro-

portions of each cell type were similar to what is seen in freely

moving experiments (Campbell et al., 2018; Mallory et al.,

2018; Miao et al., 2015; Figure 5B; STAR Methods). Grid cells

often had spatially periodic firing fields of various spatial fre-

quencies, and border cells often had periodic firing fields that

qualitatively reflected the tower spacing (Figure 5G; Figure S6).

In keeping with our analysis of all 2-map sessions, most grid,

border, and other spatial cells were consistent remappers (Fig-

ure S6). Grid cells exhibited more extensive remapping than

border cells or other spatial cells, demonstrating more global

remapping (p = 1.97 3 10�5; Figure 5E, right) and more rate re-

mapping than the other cell types (p = 4.6 3 10�4; Figure 5E,

left). These results indicate that remapping events may differen-

tially affect specific functional cell types.
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Figure 3. Data-driven detection of discrete, synchronous remapping

(A) Schematized k-means clustering strategy: raw spikes (top) are converted to normalized firing rate (center); k-means gives a low-dimensional estimate of the

neural activity (bottom).

(B) Trial-by-trial similarity (top, as in Figures 2B–2F), distance score for population-wide neural activity by trial (center; a score of 1 indicates that population activity

is in the map 1 k-means cluster centroid; score = �1, map 2 centroid), and single-neuron distance to k-means cluster centroid across trials, sorted by depth

(bottom; color bar, distance to cluster: gray, midway betweenmaps; black, at or beyondmap 1 centroid; white, map 2) for an example session (mouse 1c, session

0430_1, n = 227 cells).

(C) 2-factor k-means versus PCA performance (uncentered R2) for all single-track sessions (left) and model performance for uncentered PCA (indigo), k-means

(gold), and k-means on shuffled data (gray) for an example session (right) (mouse 1c, session 0501_1, n = 122 cells).

(D) Selection criteria for 2-map sessions (gold shading; performance gap with PCA < 70% relative to shuffle, R2
kmeans > 0:63).

(E) Average trial-to-trial spatial similarity for trials from the same map versus across maps for all 2-map sessions (mean change in correlation ± SEM,�32.43% ±

2.57%; Wilcoxon signed-rank test, p = 3.79 3 10�6) (green, cue-poor sessions; pink, cue-rich sessions).

(F) Percentage of all cells that were consistent remappers by location in the MEC (4,108 of 4,984 cells).

(C and D) n = 54 sessions, 17 mice.

(E and F) n = 4,984 cells, 28 sessions, 13 mice.

See also Figures S2 and S5.
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Positional information is conserved at a population level
across distinct spatial maps
MEC neurons project to multiple brain areas involved in spatial

information processing (Kerr et al., 2007). To consider how

downstream brain areas might make use of positional informa-

tion encoded in the MEC in spite of network-level remapping,

we investigated whether linear mechanisms can predict position

from MEC neural activity by fitting circular-linear regression

models (‘‘decoders’’) (Figures 6A–6C; see Figure S5 for sessions

with more than 2 maps; STAR Methods). We found that perfor-

mance was comparable between models trained and tested

on trials from a single map and models trained and tested on tri-

als from both maps (p = 0.65; Figure 6D). Although remapping

could in theory disrupt the performance of a simple linear
decoder if each neuron’s spatial tuning was sufficiently different

across the maps, this finding may arise because only �5% of

cells showed large changes in spatial tuning across maps (Fig-

ure 4B). To simulate an alternative case where each neuron’s

spatial tuning changed dramatically across maps, we produced

a shuffled ‘‘synthetic map’’ for each of the two maps in which

spatial coding was greatly altered (STAR Methods). Linear de-

coders trained jointly on data from each true map, and its syn-

thetic map performed substantially worse than decoders trained

on data from the pair of true maps (p < 0.05; Figure 6D).

Models also performed poorly when trained on data from one

map and tested on data from the other map (p = 7.55 3 10�11;

Figures 6E and 6F), although these decoders still largely outper-

formed a shuffle control (trained on one map, tested on the
Neuron 109, 1–14, September 15, 2021 5



Figure 4. Reversible and heterogeneous remapping of MEC representations

(A) Single-neuron spiking (top) and tuning curves (center) for example cells from a cue-poor, 2-map session, colored/divided by k-means cluster labels (black,

map 1; color, map 2), versus averaged over the session (bottom) (solid line, average firing rate; shading, SEM; the color scheme denotes cell identity and is

preserved in C and D).

(B) Absolute fold change in firing rate versus spatial dissimilarity acrossmaps for neural tuning curves from all 2-map sessions (n = 4,982 cells) (points, single cells;

histograms, density distribution for each variable; red dashes, median; gold dashes, 95th percentile).

(C) Same as (B) but for the example session.

(D) Spatial information for single neurons in map 1 versus map 2 for the example session.

(E) Percentage of MEC neurons from all 2-map sessions that were spatial in one map (gray), both maps (black), or neither map (white) (mean absolute change in

spatial information ± SEM, 57.3% ± 1.0%).

(F) Distance to k-means cluster centroid by highest average spatial information across maps (black dashes, threshold for consistent remappers).

The example session in (A), (C), and (D) is from mouse 1c, session 0430_1 (n = 227 cells). In (E) and (F), n = 4,984 cells from 28 sessions in 13 mice. See also

Figure S5.
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shuffled other map; 3 of 56 model pairs were no better than

shuffle; p R 0.05; Figure 6G; STAR Methods). Therefore, the

two maps are different—decoders specialized to a single map

struggled to generalize to the other map (Figures 6E–6G)—but,

given data from both maps, a single linear decoder performed

as well as separate, specialized decoders (Figure 6D). These re-

sults indicate that, in principle, downstream brain areas can

exploit positional information encoded in the MEC in the pres-

ence of remapping.

Neural activity transitions between geometrically
aligned ring attractor manifolds
MEC representations of space can be flexible (e.g., spontaneous

remapping) and reliable (e.g., consistent decoding perfor-

mance). To reconcile these two aspects of the circuit, we char-

acterized the geometry of position coding in K-dimensional firing

rate space (where K denotes the number of simultaneously re-

corded neurons). For the continuous 1D VR tracks used in this

study, spatially driven network activity should follow a 1D ring

manifold as the animal moves through space, reflecting the

ring-shaped environment (Figure 7A). Attractor models of spatial

navigation predict that circuit dynamics are locally stable around
6 Neuron 109, 1–14, September 15, 2021
these ring manifolds, enabling persistent internal representa-

tions of position (Samsonovich and McNaughton, 1997). Each

k-means cluster centroid provides an empirical estimate of this

attractor manifold, and, indeed, the low-dimensional linear

embedding of each centroid had a qualitative ring structure (Fig-

ures 7B and 7C). We derived these ring-shaped manifolds from

all co-recorded MEC neurons, making them distinct from the

ring structures that arise in attractor models of co-modular grid

cells (Burak and Fiete, 2009; Fuhs and Touretzky, 2006; Guanella

et al., 2007; Spalla et al., 2019). Manifolds derived from cue-poor

environments were tightly wound around themselves, as quanti-

fied by an entanglement metric (Figure 7D; n = 10manifolds from

5 cue-poor sessions, 46 manifolds from 23 cue-rich sessions;

STAR Methods), indicating that there may be limited discrimina-

bility between the first and second halves of the track in this envi-

ronment. These results suggest that the number of landmark

cues alters the geometry of the spatial map without altering its

topology as a 1D ring.

We next used PCA to visualize the two manifolds of each

2-map session in the same low-dimensional space. In cue-rich

and cue-poor environments, the manifolds appeared geometri-

cally aligned so that position coding was translated along a
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Figure 5. Navigationally relevant cell types participate differentially in remapping

(A) Schematized trial structure: 300 trials with a fixed relationship between visual and motor feedback (top, ‘‘normal trials’’) and 5 trials requiring the animal to run

twice as far to travel the same visual distance (bottom, ‘‘gain change trials’’).

(B) Distribution of putative cell types (session mean ± SEM: grid cells, 18.26% ± 3.81%; border cells, 13.23% ± 2.07%; spatially stable cells, 24.57% ± 3.12%).

(C) Rasters (top) and tuning curves (bottom) from example grid cells for adjacent normal (black) and gain change trials (red bar, colored spikes) (numbers indicate

cell identity and correlation of tuning curves across gain change; solid line, average firing rate; shading, SEM).

(D) Same as (C) but for example border cells.

(E) Absolute fold change in firing rate (left) (median change, 95th percentile: grid cells = 25.5%, 89.2%; border cells = 20.6%, 71.6%; other spatial cells = 18.5%,

55.5%; Kruskal-Wallis H test, p = 4.6 3 10�4; Wilcoxon rank-sum test: border versus grid cells, p = 0.045; other spatial versus grid cells, p = 8.59 3 10�5; other

spatial versus border cells, p = 0.217) and spatial dissimilarity (right) (median, 95th percentile: grid cells = 0.027, 0.334; border cells = 0.019, 0.137; spatial cells =

0.022, 0.119; Kruskal-Wallis H test, p = 1.973 10�5;Wilcoxon rank-sum test: border versus grid cells, p = 4.133 10�5; other spatial versus grid cells, p = 13 10�4;

other spatial versus border cells, p = 0.227) across maps for all grid, border, and other spatial cell tuning curves (***p < 0.001, *p < 0.05; horizontal bars, median;

vertical bars, 5th to 95th percentile).

(F) Rasters (top) and tuning curves (middle) for example grid cells, colored by k-means cluster labels (color, map 1; black, map 2) versus averaged over the session

(bottom) (solid line, trial-averaged firing rate; shading, SEM).

(G) As in (F) but for example border cells. All example cells are from mouse 9b, session 1207_1 (n = 61 grid cells, 9 border cells, 165 total cells).

(B and E) n = 224 grid cells, 152 border cells, 308 other spatial cells of 1,185 total excitatory cells from 9 cue-rich sessions in 5 mice. Orange color denotes grid

cells, and blue denotes border cells throughout.

See also Figure S6.
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single dimension in neural activity space (Figures 7E and 7F) rela-

tive to a shuffle control (Figures 7G and 7H). Using Procrustes

shape analysis (STARMethods), we found that the twomanifolds

required only modest rescaling (23 of 28 sessions% 10% differ-

ence in scale; Figure 7I) and rotation (all were within 7% of the

optimal rotation; Figure 7J) to align with one another. This align-

ment could arise from preserved spatial tuning in some neurons

and indicates that single-neuron coding changes (Figures 4A

and 4B) did not result in net firing rate differences across

maps. Although tuning is correlated within grid cell modules

(Hafting et al., 2005), manifold alignment was not dependent

on putative grid cells (Figure S6). Thus, remapping largely corre-

sponded to a translation in neural activity space between

geometrically aligned ring manifolds.

Because the k-means-identified ring manifolds show only the

average neural activity within each map, we next investigated

how single-trial variability around these manifolds was struc-
tured. For each session, we applied PCA to the residuals of the

k-meansmodel and kept enough components to capture at least

20% of variance in these residuals. These dimensions contain

the most ‘‘noise’’ or variability that is not captured by the

k-means model. We then computed the angle between the PC

(principal component) subspace and the dimension separating

the two manifolds (the ‘‘remapping dimension’’); this angle was

smaller than expected under a null distribution of random linear

subspaces, indicating that unexplained neural variability was ori-

ented preferentially in the remapping dimension (Figures 7K and

7L). The scale of this variability was limited so that the two mani-

foldswere oftenwell separated (themaps can be considered two

separate ringmanifolds rather than a single hollow cylinder). This

result suggests that variability in network activity could predis-

pose the network to remap (or jump from one ring manifold to

the other), with attractor dynamics locally stabilizing the network

activity within each map (Video S3).
Neuron 109, 1–14, September 15, 2021 7
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Figure 6. Positional information is conserved at a population level across maps

(A–C) Schematic: decoder training and testing strategy (yellow, map 1; white, map 2).

(A) Population-wide spiking activity (hash marks) was divided into k-means clusters; 10% of data were held out for testing (gray).

(B) Decoders were trained on data from map 1 (top), map 2 (center), or both maps (bottom).

(C) Eachmodel was used to predict position on held-out data frommap 1 (top), map 2 (center), or both maps (bottom). Models trained only on data from onemap

were also used to predict position using only data from the other map (diagonal arrows from B to C; labels indicate test map/train map).

(D) Decoder performance for models trained and tested on data from the same map (map 1 and map 2), from both maps, or from each map and its shuffle for all

2-map sessions (score = 0, chance; score = 1, perfect prediction) (mean performance ± SEM: train/test map 1 = 0.75 ± 0.04; train/test map 2 = 0.78 ± 0.04; train/

test both maps = 0.74 ± 0.04; Kruskal-Wallis H test, p = 0.65; mean ± SEM decrease from train/test both to shuffle, 60.84% ± 1.5%).

(E and F) Decoder performance within versus across maps for all sessions (gray bars, interquartile range).

(G) Decoder performance for models trained on one map and tested on the other relative to shuffle (0%) and within-map performance (100%) (mean relative

performance ± SEM, 61.81% ± 4.01%; Wilcoxon signed-rank test, p = 7.55 3 10�11; n = 56 model pairs).

(D–F) Points indicate individual sessions; green, cue-poor; pink, cue-rich; n = 4,984 cells, 28 sessions, 13 mice.
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A simple model explains the alignment of spatial
attractor manifolds
Is the geometric alignment of spatial manifolds (Figures 7E and

7F) expected under existing theories of navigational circuit dy-

namics? To address this question, we constructed a bistable

ring attractor model by linearly combining the weights of a

winner-take-all network and a ring attractor network (Figure S7;

STAR Methods). This approach is similar to previous models

that have linearly combined decorrelated connectivity matrices

to support multiple attractor structures (Romani and Tsodyks,

2010; Roudi and Treves, 2008; Samsonovich and McNaughton,

1997; Stringer et al., 2004). We could induce remapping in this

model with perturbations that pushed the neural state into the

other map’s basin of attraction (Monasson and Rosay, 2014,

2015). This model was sufficient to reproduce multiple ring

manifolds, but it failed to recapitulate the experimentally

observed geometrical manifold alignment (Figure S7). This

finding demonstrates that geometrically aligned ring manifolds
8 Neuron 109, 1–14, September 15, 2021
are not an obvious consequence of the attractor model

framework.

A minor modification to this model—adding a sub-population

of ‘‘shared neurons’’ whose spatial tuning was preserved across

maps—was sufficient to produce a pair of bistable ring attractors

thatwere highly aligned (Figure S7). This subpopulation of shared

neurons is loosely analogous to the experimentally observed

neurons with preserved spatial tuning across maps (Figures 4A

and 4B). The modified model had two additional noteworthy

properties. First, perturbing the neural activity in the direction of

the other map induced a remap but preserved the positional rep-

resentation (Figure S7). Second, remapping was well described

by a translation along a single dimension; thus, any spatial

decoder that is insensitive to this dimension will be robust to re-

mapping. For a linear decoder (as in Figure 6), this means the re-

mapping dimension should lie in the null space of the decoder

weights (Kaufman et al., 2014; Rule et al., 2020). These results

suggest that neuronswith shared coding acrossmapsmay result
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Figure 7. Neural activity transitions between geometrically aligned ring attractor manifolds

(A) Schematic: the 1D environment (top) should produce a circular 1D trajectory (i.e., ring manifold) in neural activity space (bottom) (the color scheme indicates

position and is preserved throughout).

(B) PCA projection of a single map (k-means centroid) from a cue-rich session. Inset: pairwise distances in neural activity for all points (position bins) in the

manifold (blue, minimum value; yellow, maximum).

(C) As in (B) but for a cue-poor session. The linear projection uses two principal components and a third orthogonal axis (dashed line) that maximally distinguishes

between the first and second half of the track.

(D) Top: schematic of the entanglement measure, which is the maximum ratio of distance along the manifold (‘‘a’’) to extrinsic distance (‘‘b’’) (STAR Methods).

Bottom: manifold entanglement in cue-rich and cue-poor environments.

(E) PCA projection of twomanifolds from a 2-map cue rich session. Inset: across-manifold distances in neural firing rates for every pair of points (colors as in B and

C insets).

(F) As in (E) but for a cue-poor session.

(G and H) As in (E) and (F), respectively, but after randomly rotating each manifold.

(I) Percent difference in manifold size for maps from the same session.

(J) Normalized manifold misalignment scores (0, perfectly aligned; 1, shuffle).

(K) Schematics: variability around the manifolds is oriented toward the other manifold (right), not isotropically distributed (left).

(L) Right: angles between the remapping dimension and the top PC subspace for the model residuals (20% of total noise variance). Left: null distribution (random

linear subspaces, n = 1,000 samples). All sessions displayed smaller angles than their shuffle control (Wilcoxon rank-sum test, p < 1 3 10�6).

The example in (B), (E), and (G) is session 1005_2 frommouse 6b (n = 149 cells) and in (C), (F), and (H) is session 0502_1 frommouse 1c (n = 227 cells). In (D), (I), (J),

and (L), n = 46 manifolds from 23 cue-rich sessions in 10 mice and 10 manifolds from 5 cue-poor sessions in 3 mice.
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in geometrically aligned ring manifolds, which, in turn, enables

simple mechanisms for remapping and position decoding.

Remapping events and neural variability correlate with
slower running speeds
Because the task and environment in our experiments did not

change within a given session, we next examined whether sin-

gle-trial variability and network-wide remapping correlated with

aspects of the animal’s behavior. We focused on running speed

because speed is known to modulate spatial representations in

the MEC (Bant et al., 2020; Hardcastle et al., 2017). We first

wanted to find out whether the animal’s running speed was

different on ‘‘remap trials’’ (the two trials book-ending each tran-

sition from one map to the other) compared with the intervening

‘‘stable blocks’’ (the block of trials at least two trials away from a
remap event, which all reside in the samemap).We restricted our

analysis to 2-map sessions that contained at least three remap

events and to stable blocks of at least five trials (n = 13 sessions

in 7 mice; see Figure S5 for sessions with more than 2 maps;

STAR Methods). Across most of these sessions, the animal’s

average running speed on remap trials was slower compared

with its average running speed in the preceding stable block (dif-

ference in running speed, 9.8%± 2.2%; p = 1.153 10�4; Figures

8A and 8B). Running speed largely did not vary systematically

across the two maps (Figure S8; STAR Methods).

We next investigated the moment-by-moment correlation be-

tween neural variability and running speed by binning neural ac-

tivity and speed into 5-cm position bins within each trial. Given

the random reward structure, the running speed distribution for

each track position was comparable (Figure S8). For each
Neuron 109, 1–14, September 15, 2021 9
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Figure 8. Remapping events and neural variability correlate with slower running speeds

(A) Average running speed in remap trials versus stable blocks for an example session (points, pairs of remap trials/stable blocks; dashed line, unity; n = 13 pairs).

(B) As in (A) but for all 2-map sessions (remap trial speeds were slower in 9 sessions, equal in 2 sessions, and faster in 2 sessions; Wilcoxon signed-rank test,

p = 1.15 3 10�4) (points, session average; green, cue-poor; pink, cue-rich; gray error bars, SEM; dashed line, unity; n = 127 pairs from 13 sessions, 7 mice).

(C) Top and bottom: running speed and distance to the midpoint between k-means clusters for trials from two example stable blocks (black trace, running speed;

black shading, map 1; white, map 2; gray, between maps). Center: magnification of the first (left) and last (right) example trials, showing neural activity ap-

proaching the midpoint (arrowheads) (across sessions, stable bin distance interquartile range: 0.763–1.338).

(D) Average distance to the midpoint versus binned running speed for an example session (distance score = 1, activity is in a cluster centroid; 0, equidistant from

each map) (black line, average; gray shading, SEM; distance to midpoint is Z scored).

(E) as in (D) but for all 2-map sessions; speed is normalized within each session (ordinary least-squares regression, R2 = 0.778, p < 13 10�6; n = 10 speed bins per

session, 28 sessions, 13 mice, 4,984 cells).

(F) Schematic model showing how running speed might encourage neural activity (ball, activity; arrow, trajectory in state space) to transition between manifolds

(top) by shaping the energy landscape (black line) (center, slow speeds; bottom, fast; dashed line, midpoint between clusters).

The example session in (A), (C), and (D) is from mouse 1c, session 0430_1 (n = 227 cells). See also Figures S5 and S8.
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position bin, we calculated how close the neural activity was to

the midpoint between manifolds, where activity is most likely to

switch between maps (STAR Methods). As expected, neural ac-

tivity was closer to the midpoint in remap trials compared with

stable blocks (p < 1 3 10�6; Figure S8). However, we also

observed instances where the neural activity approached the

midpoint within stable periods, indicating that neural variability

does not always provoke a remap event (Figure 8C, arrowheads).

Across all position bins, slower running speeds were correlated

with a reduced neural distance to the midpoint between mani-

folds (p < 1 3 10�6; Figures 8D and 8E). These results suggest

that neural variability increases in the direction of the other map

at slow running speeds, likely increasing the probability of a

remap event. If wemodel the two spatialmaps as bistable ring at-

tractors (as discussed in the previous section), then a decrease in

running speed could correspond to a reduction in the energetic

barrier that separates the two basins of attraction (Figure 8F) or

to another change that encourages neural activity to flip to the

other attractor. Although the neural distance to the midpoint be-

tween clusters was variable across different track positions and

appeared to dip slightly in the reward zone, this variability was

no greater than expected by chance (p > 0.05; Figure S8).

DISCUSSION

Here we report that MEC representations are capable of remap-

ping in VR environments without any changes to sensory cues

(Diehl et al., 2017; Fyhn et al., 2007; Marozzi et al., 2015; Solstad
10 Neuron 109, 1–14, September 15, 2021
et al., 2008) or task demands (Boccara et al., 2019; Butler et al.,

2019; Keene et al., 2016). Remapping events were coordinated

across the MEC population, recruited many different cell types,

and often comprised discrete and reversible switches between

spatial maps that persisted over long (roughly 1–30 min) time-

scales. Remapping comprised diverse coding changes across

neurons—including up to 3-fold variation in peak firing rate and

50% reconfiguration of spatial coding—and appeared to differ-

entially affect different functional cell types. Although previous

reports have found that faster running speed is associated with

sharpened spatial tuning in single neurons (Bant et al., 2020;

Hardcastle et al., 2017), we found that changes in running speed

can also correspond to remapping events that produce large and

persistent shifts inMEC coding. Finally, neural activity remapped

by transitioning between geometrically aligned manifolds,

enabling simple, linear decoding strategies. Our results suggest

that a single population of MEC neurons can rapidly switch be-

tween multiple stable representations of a single environment.

Although neural activity often alternated between two stable

spatial maps, we also observed sessionswithmore than two sta-

ble maps and sessions where activity remapped between

spatially stable and unstable coding regimes.We largely focused

on single-track sessions with two maps (‘‘2-map sessions’’),

which allowed us to thoroughly characterize this common form

of remapping and provided insight into how neural circuits might

store and interpret multiple neural representations more gener-

ally. We found that a single decoder could accurately infer posi-

tion across remapping events, indicating that MEC spatial
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representations contain changing contextual information and

stable positional information that is segregated into orthogonal

linear subspaces (Kaufman et al., 2014; Rule et al., 2020). Our

finding that remapping comprised a translation in neural activity

space provides a geometric interpretation of this possibility.

This geometric arrangement could allow downstream neurons

that are insensitive to the remapping dimension to extract

consistent positional information regardless of themap, whereas

neurons sensitive to this dimension could extract contextual

information.

We further showed that a bistable ring attractor model network

(Battaglia and Treves, 1998; Romani and Tsodyks, 2010; Sam-

sonovich and McNaughton, 1997) does not produce aligned

rings but that adding a sub-population of ‘‘shared neurons’’

was sufficient to recapitulate the experimentally observed align-

ment. Previous work has studied transitions between continuous

attractors in the context of hippocampal and co-modular grid

cell attractor networks (Monasson and Rosay, 2014, 2015;

Spalla et al., 2019). Our modeling results differ by (1) considering

the full MEC circuit (not only grid cells) and (2) interpreting each

continuous attractor as representing the same external environ-

ment (not different environments). These results illustrate how

our experimental findings might be interpreted and integrated

into ongoing theoretical research on MEC and hippocampal

circuits.

One feature of remapping between aligned manifolds is that it

allows the network to preserve unchanging information while

rapidly and synchronously updating changing contextual infor-

mation. Our findings complement previous studies in the hippo-

campus (Rubin et al., 2015; Taxidis et al., 2020; Ziv et al., 2013)

and MEC (Diehl et al., 2019) that found context delineation in a

single environment over longer timescales (hours to days) via

representational drift that is asynchronous across neurons.

This type of remapping over longer timescales may relate to

learning dynamics (Taxidis et al., 2020), grouping of temporally

adjacent memories (Rubin et al., 2015), and building an episodic

timeline for repeated interactions with a single environment

(Diehl et al., 2019; Sheintuch et al., 2020; Ziv et al., 2013). The

rapid remapping (under 1 min) we observed across the MEC

may interact with these slower processes of representational

drift to form a rich internal map of temporal and contextual

episodes.

It is possible that the impoverished sensory experience of our

virtual environment promoted remapping, perhaps leading the

animal to infer multiple different contexts in the same VR track

(Ravassard et al., 2013; Sanders et al., 2020). However, com-

plete remapping of hippocampal spatial representations of a

single environment was observed recently in freely behaving

animals, suggesting that similar remapping can occur in more

naturalistic settings (Sheintuch et al., 2020). It is also well es-

tablished that MEC neurons can remap in freely behaving ani-

mals in response to changing sensory features (Diehl et al.,

2017; Fyhn et al., 2007; Marozzi et al., 2015; Solstad et al.,

2008) or task demands (Boccara et al., 2019; Butler et al.,

2019; Keene et al., 2016). Our findings may represent a related

form of MEC remapping driven by internal rather than external

factors that likely interacts with previously established forms of

remapping.
Finally, our finding that remapping events correlated with

slower running speeds raises specific hypotheses regarding

how behavioral state may drive widespread changes in MEC

coding. Running speed can indicate task engagement—e.g., in

our task, faster speeds lead the animal to ‘‘find rewards’’ more

quickly—or of arousal more broadly (Bennett et al., 2013; Niell

and Stryker, 2010; but see Vinck et al., 2015). Behavioral state

changes related to running speed and arousal can alter neural

processing in complex ways; for example, targeted neuromodu-

lation of GABAergic interneurons modulates sensory neuron re-

sponses (Ferguson and Cardin, 2020). It is possible that similar

or analogous biophysical mechanisms act on MEC neurons,

and it will be of particular interest for future studies to dissect

the mechanisms by which MEC neurons are commonly and

differentially affected by running speed. Moreover, detailed

consideration and tracking of multiple behavioral state variables

(e.g., pupil dilation and whisking) will be needed to identify which

specific variables control remapping in the navigation circuitry.

We find that the MEC has the capacity to remap in a rapid and

reversible fashion, which could support a role of this circuit in

dividing the unbroken stream of sensory features encountered

during navigation into discrete contextual episodes. Further,

our findings align with a larger body of emerging studies demon-

strating that cortical activity is highly responsive to behavioral

state changes (Jennings et al., 2019; Salay et al., 2018; Stringer

et al., 2019). Our results suggest that these behavioral state

changes may drive rapid, large-scale reconfiguration of internal

representations of the external world in higher-order cortex.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All techniques were approved by the Institutional Animal Care and Use Committee at Stanford University School of Medicine. Re-

cordings were made from 17 C57BL/6 mice aged 4 weeks to 3.5 months at the time of first surgery (15.7–35 g). All mice were female

except litters 5 and 9 (6 mice), which were male. Mice were group housed with same-sex littermates, and in one case with the dam

(2a, b, c with 3a), unless separation was required due to water restriction, aggression, or disturbance of prep site. Mice were housed

in transparent cages on a 12-h light-dark cycle and experiments were performed during the light phase.

METHOD DETAILS

Training and handling
Mice were handled at least every 2 days following headbar implantation and given an in-cage running wheel. Starting 1 day after

headbar implantation, same-sex mice were placed daily in a large (100x100cm), communal environment with enrichment objects

including a running wheel, Lego tower, textured floor tape, and crushed chocolate cheerios for between 15 mins and 2 hours.
Neuron 109, 1–14.e1–e11, September 15, 2021 e1

mailto:giocomo@stanford.edu
https://doi.org/10.17632/hntn6m2pgk.1
https://doi.org/10.17632/hntn6m2pgk.1
https://www.scipy.org/
https://scikit-learn.org/
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://github.com/MouseLand/Kilosort
https://www.neuropixels.org/probe
https://doi.org/10.5281/zenodo.5062491


ll
Article

Please cite this article in press as: Low et al., Dynamic and reversible remapping of network representations in an unchanging environment, Neuron
(2021), https://doi.org/10.1016/j.neuron.2021.07.005
Mice were monitored for aggression and separated as needed. Mice were given free access to water until 3 days after headbar im-

plantation, after which they were water restricted to 1mL of water per day andweighed daily to ensure a body weight of > 80%of their

starting weight.

After > 1 day of water restriction, mice were acclimated to head fixation and trained to drink water from a custom lickport for

10-20 mins over 2 days. Mice were then trained to run on the virtual random forage task (described below) starting with a reward

probability of 0.1/cm (essentially one reward per 50 cm), for gradually decreasing reward probability and gradually increasing session

length as behavior improved. Mice were trained on the exact track(s) that they were recorded in, either cue poor (litters 1, 2, and 3),

cue rich (litters 6, 7, 9 and 10), or both (litters 4 and 5). Mice trained on both tracks were exposed to each track in a counterbalanced

fashion, initially alternating tracks over days and ultimately alternating the order of presentation asmice improved sufficiently to run 2

or more sessions per training day. Training continued at least until mice ran > 300 trials in 2 hours and demonstrated proficient licking

from the lickport in the reward zone; training was sometimes extended in order to stagger recording periods (7 days to 7 weeks;

mean ± SEM: 23 ± 3 days; 7 mice never learned the task).

In vivo survival surgeries
For all surgeries, anesthesia was induced with isoflurane (4%; maintained at 0.5%–1.5%) followed by injection of buprenorphrine

(0.05–0.1 mg/kg). Animals were injected with baytril (10 mg/kg) and rimadyl (5 mg/kg) immediately following each surgery and for

3 days afterward. In the first surgery, animals were implanted with a custom-built metal headbar containing two holes for head fix-

ation, as well as with a jewelers’ screw with an attached gold pin, to be used as a ground. The craniotomy sites were exposed and

marked during headbar implantation and the surface of the skull was coated in metabond. After completion of training, a second

surgery was performed to make bilateral craniotomies (�200mm diameter) at 3.7–3.95mm posterior and 3.3–3.4mm lateral to

bregma. A small plastic well was implanted around each craniotomy and affixed with metabond. Craniotomy sites were covered

with a drop of sterile saline and with silicone elastomer (Kwik-sil, WPI) in between surgery and recordings.

In vivo electrophysiological data collection
All recordings were performed at least 16-h after craniotomy surgery. Mice were head-fixed on the VR recording rig. Craniotomy site

was exposed and rinsed with saline—occasionally dura was re-nicked or debris removed using a syringe tip. Recordings were per-

formed using Phase 3B Neuropixels 1.0 silicon probes (Jun et al., 2017) with 384 active recording sites (out of 960 total) along the

bottom �4 mm of a �10 mm shank (70 mm wide shank diameter, 24 mm thick, 25 mm electrode spacing), and reference and ground

shorted together. The probe was positioned over the craniotomy site at 8–14� from vertical and targeted to �50–300 mm anterior of

the transverse sinus using a micromanipulator. On consecutive recording days, probes were targeted medial or lateral of previous

recording sites as permitted by the craniotomy and/or probe angle was varied to ensure that we were recording from a new popu-

lation of cells each day (Figure S1). The reference electrodewas then connected to a gold ground pin implanted in the skull. The probe

was advanced slowly (�4–10 mm/s) into the brain until it encountered resistance or until activity quieted on channels near the probe

tip, then retracted 100–500mm and allowed to sit for at least 30 mins prior to recording. While the probe was implanted, the crani-

otomy site was covered with sterile saline and silicon oil. Signals were sampled at 30 kHz with gain = 200 (7.63 mV/bit at 10 bit res-

olution) in the action potential band, digitized with a CMOS amplifier andmultiplexer built into the electrode array, then written to disk

using SpikeGLX software.

Virtual reality (VR) environment
The VR recording set-upwas nearly identical to the set-up in Campbell et al. (2018). Head-fixedmice ran on a 15.2-cm-diameter foam

roller (ethylene vinyl acetate) constrained to rotate about one axis. The cylinder’s rotation was measured by a high-resolution quad-

rature encoder (Yumo, 1024 P/R) and processed by a microcontroller (Arduino UNO). The virtual environment was generated using

commercial software (Unity 3D) and updated according to the motion signal. VR position traces were synchronized to recording

traces on each frame of the virtual scene. The virtual scene was displayed on three 24-inch monitors surrounding the mouse. The

gain of the linear transformation from ball rotation to translation along the virtual track was calibrated so that the virtual track was

4 m long. At the end of the track, the mouse was teleported seamlessly back to the start to begin the next trial, such that the track

was seemingly infinite (all visual cues were repeated and visible into the distance as the mouse approached the track end).

Cue rich tracks consisted of 5 towers of different heights, widths, and patterns (black and white, neutral luminance), placed at

80 cm intervals starting at 0 cm and a black and white checkerboard on the floor for optic flow (see schematic, Figure 1B, top,

and screenshot, Figure S1A). Cue poor tracks contained 2 towers of different patterns placed at 0 and 200 cm and a white to black

horizontal sinusoidal pattern on the floor (see schematic, Figure 1B, bottom, and screenshot, Figure S1B). Both tracks had uniform

gray walls and sky beyond the towers. For mice that experienced a single track, recording sessions consisted of 57–450 trials

(mean ± SEM: 328 ± 14 trials). For mice that experienced both tracks, each track was presented in a block of 75–100 trials with

�1 min of darkness in between tracks (Figure S8). Blocks alternated between cue rich and poor—each track was presented twice

(barring rare cases when the mouse failed to complete the session) and which track was presented first was alternated on each day.

In a subset of cue rich, single-track sessions (N = 21 sessions in 5 mice) we appended 5 gain manipulation trials to the end of each

session in which the mouse had to run twice as far to traverse the same distance along the virtual track, as in Campbell et al. (2018).
e2 Neuron 109, 1–14.e1–e11, September 15, 2021
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Random foraging task
In both cue rich and cue poor tracks, visually marked reward zones appeared at a probability of 0.01–0.001 per cm, titrated to mouse

performance, within the middle 300 cm of the track and at least 50 cm apart. Reward zones were 50 cm long and track-width, were

patterned with a black and white diamond checkerboard, and hovered slightly above the floor (Figure S1). Upon entering the reward

zone, animals could request water by licking and breaking an infrared beam at the mouth of the lickport; if not requested, water was

dispensed automatically at the center of the zone. Formice 1c, 4a, and 4b for some recording sessions there were between 1-5 probe

trials every 10 trials in which water was only dispensed if requested in the reward zone (no automatic dispensation). Upon water

dispensation (or next trial start for missed probe trials), the current reward zone disappeared and the next zone became visible. Water

rewards (�1.5 mL) were delivered using a solenoid (Cole-Parmer) triggered from the virtual environment software, generating an

audible click with water delivery. Licks were recorded as new breaks in the lickport infrared beam and were processed by a micro-

controller (Arduino UNO).

Histology and probe localization
Before each implantation, probes were dipped in fixable lipophilic dye (1mM DiI, DiO, DiD, Thermo Fisher) 10 times at 10 s intervals.

Within 7 days of the first probe insertion, mice were killed with an overdose of pentobarbital and transcardially perfused with phos-

phate-buffered saline (PBS) followed by 4% paraformaldehyde. Brains were extracted and stored in 4% paraformaldehyde for at

least 24 h before transfer to 30% sucrose in PBS. Brains were then rapidly frozen, cut into 30-mm sagittal sections with a cryostat,

mounted and stained with DAPI. Histological sections were examined and the location of the probe tip and entry into the dorsal MEC

for each recording were determined based on the reference Allen Brain Atlas (Allen Institute for Brain Science, 2004; Figure S1). The

location of each recording site along the line delineated by the probe tip and entry point was then determined based on each site’s

distance from the probe tip. Only cells within MEC, again based on the reference Allen Brain Atlas (Allen Institute for Brain Science,

2004), were included for analysis (Figure S1). In all cases, ‘‘depth’’ reported is the ventral distance from the dorsal boundary of MEC in

the medial section where the probe entered MEC.

Offline spike sorting
Electrophysiological recordings were common-average referenced to the median across channels and high-pass filtered above

150Hz. Automatic spike sorting was then performed using Kilosort2, a high-throughput spike sorting algorithm that identifies clusters

in neural data and is designed to track small amounts of neural drift over time (open source software byMarius Pachitariu, Nick Stein-

metz, and Jennifer Colonell; https://github.com/MouseLand/Kilosort; see also Kilosort1; Pachitariu et al., 2016). After automatic

spike-sorting, all clusters with peak-to-peak amplitude over noise ratio < 3 (with noise defined as the standard deviation of voltage

traces in a 10ms window preceding detected spike times), total number of spikes < 100, and repeated refractory period violations

(0-1 ms autocorrelegram bin > 20% of maximum autocorrelation) were excluded. All remaining clusters were manually examined

and labeled as ‘‘good’’ (i.e., stable and likely belonging to a single, well-isolated neural unit), ‘‘MUA’’ (i.e., likely to represent multi-

unit activity), or ‘‘noise.’’ Only well-isolated ‘‘good’’ units from within MEC (barring Figures S1I and S1J, which were non-MEC units)

with greater than 400 spikes were included for analysis in this paper (Figure 1G). Sessions with fewer than 10 cells meeting these

criteria were excluded.

Behavioral data preprocessing
On each frame of the virtual reality scene, the virtual position and time stamps were recorded and a synchronizing TTL pulse was sent

from an Arduino UNO to the electrophysiological recording equipment. These pulses were recorded in SpikeGLX using an auxiliary

National Instruments data acquisition card (NI PXIe-6341 with NI BNC-2110). The location of each reward zone, time of each lick, and

time of each reward dispensation were also recorded. Thus all time stamps and behavioral factors were synchronized to the neuro-

physiological data. Time stamps were adjusted to start at 0 and all behavioral data was interpolated to convert the variable VR frame

rate to a constant frame rate of 50Hz. As the track was effectively circular and 400 cm long, recorded positions less than 0 or greater

than 400 cmwere converted to the appropriate position on the circular track (e.g., a recorded position of 404 cmwould be converted

to 4 cm and a recorded position of �4 cm would be converted to 396 cm). Trial transitions were identified as time points where the

difference in position across time bins was less than �100 cm (i.e., a transition from �400 cm to �0 cm) and a trial number was

accordingly assigned to each time point.

Running speed for each time point was computed by calculating the difference in position between that time point and the previ-

ous, divided by the framerate (speed at the first time point was assigned to be equal to that at the second time point). Speeds greater

than 150 cm/s or less than �5 cm/s were removed. Speed was then interpolated to fill removed time points and smoothed with a

Gaussian filter (standard deviation 0.2 time bins). For all analyses except lick and reward zone analyses (Figures 1C–1F), stationary

time bins (speed < 2 cm/s) were excluded.

Running speed across maps
Because the k-means cluster labels are arbitrarily assigned, we designated themapwith the slower overall average running speed as

map 1 for consistency across analyses. To assess possible differences in running speed across maps, we computed the fractional

difference in running speed across the k-means identified maps in all 2-map sessions. To control for any systematic changes in
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running speed over time in the session, we calculated the average running speed for each block of adjacent trials from the samemap

and compared it to the average running speed of the subsequent block of trials from the other map. We compared the resulting dis-

tribution of fractional difference in running speed to a shuffle control in which running speed was randomly shuffled across time bins

(re-designating map 1 according to whichever shuffled map had a slower overall average running speed; 1000 shuffles per session)

(Figure S8J).

Population analysis and clustering model
The 1D track was divided into 5 cm position bins (total of 80 bins). On each traversal of the track, the empirical firing rate of each

neuron—i.e., number of spikes divided by time elapsed—was computed for every position bin. We then smoothed the firing rate

traces with a Gaussian filter (standard deviation 5 cm). For each session this resulted in a 3-dimensional array of raw firing rates,

with dimensions corresponding to trials, positions, and neurons.

Because these raw firing rates varied widely across neurons, we rescaled them so that the peak firing rate was commensurate

across cells. Similar normalization steps or variance-stabilizing transformations have been used in previous population analyses

of neural data (Churchland et al., 2012; Williams et al., 2018; Yu et al., 2009), to prevent neurons with high firing rates from washing

out low firing rate neurons. Here, we normalized firing rates by first clipping themaximum firing rate of each neuron at its 90th percen-

tile (to exclude large outliers), and then re-scaling each neuron’s firing rate to range between zero and one. That is, if ~Xijk denotes the

clipped firing rate on trial i, position bin j, and neuron k, then the normalized firing rate was computed as:

Xijk =

~Xijk �min

 
~X ::k

!

max

 
~X::k

!
�min

 
~X ::k

! (Equation 1)

The maxð $Þ and minð $Þ operations (as well as the 90th percentile clipping operation) are applied on a neuron-by-neuron basis, pool-

ing observations across all trials and timebins. For double-track sessions (which contained 2 blocks of cue rich trials and 2 blocks of

cue poor trials, in alternating order) we added an additional per-neuron correction factor to account for drift in firing rates: the mean

normalized firing rate for each neuron (across all trials and position bins) was subtracted within each block of trials, and the result was

renormalized to values between zero and one, as above.

On each trial, MEC’s representation of position is summarized by a matrix, denoted Xi:: for trial i, with rows and columns respec-

tively corresponding to position bins and neurons. A simplemeasure of similarity between two trials, indexed by i and i0, is given by the
Pearson correlation between the vectors vecðXi::Þ and vecðXi0 ::Þ. Network-wide trial-by-trial similarity matrices (as in Figures 2, 3, S1,

S2, S4, and S5) were found by computing this correlation across all pairs of trials.

One can view Xijk as a I3J3K array, or tensor, of normalized firing rates. As before the index variables i, j, and k, respectively repre-

sent trials, position bins, and neurons. Now consider the following low-rank matrix factorization model (Singh and Gordon, 2008;

Udell et al., 2016) of these data:

bXijk =
XR
r = 1

U
ðrÞ
i V

ðrÞ
jk (Equation 2)

Where R<minðI; J;KÞ denotes the number of model components, or the model rank. Equation 2 represents an approximate factor-

ization of the I3JK matricization or tensor unfolding of the data array (Kolda and Bader, 2009; Seely et al., 2016). We will see that k-

means clustering arises as a special case of this model, and in this special case R represents the number of clusters (i.e., the number

of spatial maps).

The parameters U
ðrÞ
i and V

ðrÞ
jk are optimized according to a least-squares criterion:

minimize
X
ijk

XR
r =1

U
rð Þ
i V

rð Þ
jk � Xijk

 !2

(Equation 3)

It is well-known that a rank-R truncated singular value decomposition (SVD) provides a solution to this optimization problem (Eckart

and Young, 1936). Further, the solution provided by truncated SVD is closely related to Principal Components Analysis (PCA)—

indeed, these two methods are identical for the case of mean-centered data (see, e.g., Shlens, 2005). Since the normalized firing

rate array Xijk in Equation 3 is not mean-centered, we refer to this initial model as ‘‘uncentered PCA.’’ We use the uncentered coef-

ficient-of-determination (uncentered R2) as a normalized measure of model performance associated with Equation 3.

The k-means clustering model incorporates an additional constraint into the uncentered PCA model. Specifically, k-means seeks

to minimize Equation 3,

subject to
X
r

U
rð Þ
i = 1 for all i˛ 1;.; If g; and

U
rð Þ
i ˛ 0; 1f g for all i; r˛ 1;.; If g3 1;.;Rf g:

(Equation 4)
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Thus, if we view U
ðrÞ
i as the elements of an R3Imatrix, the rows of this matrix are constrained to be standard Cartesian basis vectors

ofR-dimensional space (‘‘one-hot vectors’’). Each of these vectors specifies the cluster assignment label for every trial (see Figure 3A

for a schematic illustration for theR = 2 case). Further, we can interpret V
ðrÞ
jk as elements of anR3J3K array. For a fixed cluster index r,

the remaining elements form a J3K matrix, called a ‘‘slice’’ of the original array (Kolda and Bader, 2009). Each slice corresponds to a

cluster centroid, which we may interpret as a spatial map—the columns are J-dimensional vectors holding the spatial tuning curves

for every neuron, so different slices correspond to different sets of spatial tuning curves (i.e., different spatial maps).

This connection between k-means clustering and other matrix factorization models is well-known and expanded upon in detail by

(Singh andGordon, 2008; Udell et al., 2016).We exploit this connection to assess the k-meansmodel, which ismore constrained than

uncentered PCA (i.e., truncated SVD) in that each row of U
ðrÞ
i is constrained to be a one-hot vector as opposed to an arbitrary vector.

Intuitively, this allows us to interpret each trial as belonging to one of R types, as opposed to a linear combination of them. The fact

that the more restrictive k-means model performs nearly as well as uncentered PCA gives credence to the multiple-map interpreta-

tion. To compare these two models we used a randomized cross-validation procedure in which 10% of the data, representing the

validation set, were censored in a speckled holdout pattern (Williams et al., 2018; Wold, 1978). Ten randomized replicates were per-

formed for all models. For the case of R= 2 components, we often observed similar performance (measured by the uncentered R2

averaged over validation sets) between uncentered PCA and k-means for all sessions (Figure 3C).

Further, we compared the test performance of k-means on ‘‘shuffled’’ datasets (Figures 3C, right, and 3D). Firing rates from a

behavioral session were shuffled by applying a random rotation (i.e., an orthogonal linear transformation) to Xijk across trials. That

is, we sample a random rotation matrix Qii0 and define

X�
ijk =

XI

i0 = 1

Qii0Xi0 jk

as the new shuffled dataset, which is substituted into the objective function defined in Equation 3. This form of shuffling preserves

many features of the data, including the overall norm of the data and correlations between neurons and position bins. However, it

destroys the sparsity pattern on U
ðrÞ
i which is imposed by the k-means model. This procedure is similar in spirit to methods proposed

by Elsayed and Cunningham (2017).

Sessions that were well-approximated by the k-means model with R = 2 clusters were classified as ‘‘two-map’’ sessions (Fig-

ure 3D). We required that the performance gap (measured by the uncentered R2 averaged over validation sets) between k-means

and uncentered PCA and be less than 70% relative to the shuffle control. Further, we required an uncentered R2 of at least 0.63

for the k-means model with R = 2 maps. Sessions not meeting these criteria sometimes displayed more than two maps (see Fig-

ure S5), long periods of unstable coding (see Figures S1 and S2), or little to no remapping at all (Figure S2). For all k-means analyses,

we ran the clusteringmodel at least 100 times on all neural data from each session to account for model variability, keeping themodel

with the best fit to the data.

Manifold alignment analysis
Weused standard Procrustes analysis methods (Gower and Dijksterhuis, 2004) to assess the degree to which the two ringmanifolds,

representing spatial maps, were aligned in neural firing rate space. Recall that the k-means centroids provide an estimate of each

spatial map—in this case, we restrict our focus to R = 2 maps, so the two maps are given by V
1ð Þ

jk and V
2ð Þ

jk . Geometrically, these

maps are represented as J points embedded in a K-dimensional space (recall that J denotes the number of position bins and K is

the number of simultaneously recorded neurons). Procrustes Analysis begins by centering each of these manifolds at the origin

and rescaling them to have unit norm. Let V
1ð Þ
jk and V

2ð Þ
jk denote the maps after these preprocessing steps have been applied, i.e.,

V
ð1Þ
jk =

V
ð1Þ
jk � 1

J

P
jV

ð1Þ
jk P

jk

 
V

ð1Þ
jk � 1

J

P
jV

ð1Þ
jk

!2!1=2
V
ð2Þ
jk =

V
ð2Þ
jk � 1

J

P
jV

ð2Þ
jk P

jk

 
V

ð2Þ
jk � 1

J

P
jV

ð2Þ
jk

!2!1=2

Since position bin j in map 1 and position bin j in map 2 correspond to the same location on the track, we consider the root-mean-

squared-error (RMSE)between thesecenteredand rescaledmapsas theempirically ‘‘observed’’ alignmentscore (reported inFigure5J): 
1

JK

X
jk

�
V

ð1Þ
jk � V

2

jk

�2
!1=2
Neuron 109, 1–14.e1–e11, September 15, 2021 e5



ll
Article

Please cite this article in press as: Low et al., Dynamic and reversible remapping of network representations in an unchanging environment, Neuron
(2021), https://doi.org/10.1016/j.neuron.2021.07.005
The central step of Procrustes analysis is to find the optimal rotation matrix that aligns these two point clouds. That is, we wish to find

the matrix Q�
kk that solves the following optimization problem:

minimize
X
jk

 
V

ð1Þ
jk �

X
k0
Qkk0V

ð2Þ
jk0

!2
subject to
X
k

Q[kQkp = d[p for all [ ;p˛ f1;.;Kg3 f1;.;Kg

This optimization problem admits a closed form solution that is expressed in terms of the singular value decomposition of the K3 K

matrix
P

jV
ð1Þ
jk
V
ð2Þ
jk0 (Schönemann, 1966). SeeGower andDijksterhuis (2004) for further backgroundmaterial. In Figure 7J, we report the

RMSE compared to the optimal rotation (misalignment score = 0) and a random rotation matrix (‘‘shuffle’’).

Manifold entanglement calculation
We quantified the entanglement of a manifold as the maximum ratio of intrinsic distance (i.e., distance along themanifold) to extrinsic

distance (i.e., Euclidean distance inK-dimensional space) between any two points on themanifold. Concretely, the extrinsic distance

between two points corresponding to position bins j and j0 was computed as:

djj0

 X
k

�
Vjk � Vj0k

�2!1=2

The intrinsic distance,Djj0 , was the sumof extrinsic distances along the shortest path from j to j0 (see diagram in Figure 7D). Depending

on whether one travels clockwise or counterclockwise along the ring, there are two paths connecting any pair of points—the intrinsic

distance is given by whichever path is shorter. The triangle inequality implies that Djj0Rdjj0 for every pair of points along the manifold.

When the ratio Djj0=djj0 is large, this implies that the pair of points ðj; j0Þ on the manifold are close together in neural firing rate space

despite encoding very different positions on the VR track—speaking loosely, we say these points are ‘‘entangled.’’ Conversely, when

Djj0=djj0 is small, the two points are far apart in firing rate space in proportion to their encoded positions on the VR track. Thus, a mea-

sure of manifold entanglement is given by max½Djj0 =djj0 �, which measures the worst-case entanglement over the full manifold (the

max½ $� operator is understood to be taken over all pairs of position bins, j and j0). Noting that this raw entanglement score is upper

bounded by B=max½Djj0 �=min½djj0 � and lower bounded by one, we can normalize the tangling metric to range between zero (no entan-

glement) and one (high entanglement) as follows:

max
�
Djj0
�
djj0
�� 1

B� 1

We report this normalized entanglement metric in our results.

Distance to cluster calculations
After fitting the k-means model and obtaining two centroids, V

ð1Þ
jk and V

ð2Þ
jk , we can quantify how close network activity is to each

centroid on a trial-by-trial or neuron-by-neuron basis. In each case we project the activity onto a one-dimensional space where

–1 corresponds to one centroid and +1 corresponds to the other centroid. That is, for each trial i, we compute

Pi =

P
jk

	
2Xijk �

	
V

ð1Þ
jk +V

ð2Þ
jk



	
V

ð1Þ
jk +V

ð2Þ
jk



P

jk

	
V

ð1Þ
jk +V

ð2Þ
jk


2
Note that Pi = 1 when Xijk =V

ð1Þ
jk and Pi = � 1 when Xijk = V

ð2Þ
jk . Further, if the network activity on trial i is at the midpoint, then Xijk =

ðV ð1Þ
jk +V

ð2Þ
jk Þ=2 and so Pi = 0.

We can compute an analogous statistic for each combination of trial i and position bin j:

Pij =

P
k

	
2Xijk �

	
V

ð1Þ
jk +V

ð2Þ
jk



	
V

ð1Þ
jk � V

ð2Þ
jk



P

k

	
V

ð1Þ
jk � V

ð2Þ
jk


2
Likewise, we can compute for each combination of trial i and neuron k:

Pik =

P
j

	
2Xijk �

	
V

ð1Þ
jk +V

ð2Þ
jk



	
V

ð1Þ
jk � V

ð2Þ
jk



P

k

	
V

ð1Þ
jk � V

ð2Þ
jk


2
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Note that Pi, Pij, and Pik refer to three different quantities, which are only distinguished on the basis of their indices. This concise,

somewhat informal, notation is common in tensor algebra, but is restricted to the present section to prevent potential confusion.

In Figure 3, we usePik to identify neurons that consistently remap. Let ci denote the cluster label of each trial such that ci = 1 if trial i is

in map 1 and ci = –1 if trial i is in map 2. Then logð1 + expð�ciPikÞÞ provides a measure of distance between the spatial firing pattern of

neuron k to the spatial map (i.e., cluster centroid) on trial i. Specifically, this calculation corresponds to a logistic loss function in the

context of classification models. Averaging this distance over trials summarizes the remapping strength—intuitively, an average dis-

tance close to zero implies that the neuron ‘‘agrees with’’ the rest of the population on each trial, while a large average distance im-

plies that the neuron is inconsistent (e.g., because the neuron exhibits high levels of noise on each trial). We classified neurons as

‘‘consistent remappers’’ when the average distance was less than 1.

In Figures 8 and S8, we usedPij to assess the relationship between running speed and the distance of neural coding to themidpoint

between clusters. In Figure 8D, we plotted |Pij|, i.e., the distance to midpoint, in 10 running speed bins for an example session—the

first 9 bins were evenly spaced between 0 cm/s and 20 cm/s below the maximum speed; the last bin included all top speeds above

this final threshold (this was done to account for rare bursts of high speeds). Similarly, in Figure 8E we plotted |Pij| in 10 running speed

bins, normalized within each session. In Figure S8C-E, we use histograms to visualize Pij for all trials and position bins. To account for

arbitrary map assignment, we randomly flipped the sign of Pij for each session in Figure S8E. Likewise, the white-to-black heatmaps

in Figures 8C, S8H, and S8I visualize Pij for a subset of trials. In all cases, Pij was z-scored to normalize across sessions.

In Figure S8 we performed a similar analysis examining the effect of track position (and therefore landmarks) or reward on the dis-

tance of neural coding to the midpoint between clusters. In Figure S8M we examined the average distance to the midpoint within

each 5cm position bin along the track, split by cue rich and cue poor session types (to assess the effect of landmarks). We compared

these distances to a shuffle control in which neural activity was shifted by a randomdistance up to 400cm. Similarly, in Figure S8L, we

examined the average distance tomidpoint for 5cm position bins for 100cm centered on each random reward zone (25cm approach-

ing, 50cm within the zone, and 25cm exiting). We compared these distances to a shuffle control created by the same procedure.

Position decoding analysis
We fit linear models to predict the animal’s position from the spiking activity of all MEC neurons, and call the optimized model a

‘‘decoder’’ following common terminology and practice (Kriegeskorte and Douglas, 2019) (Figure 6). Let yt˛½0;2pÞ denote the position

on the circular track at time t, and let snt denote the number of spikes fired by neuron n at time t after smoothing with a Gaussian filter

(standard deviation = 200ms). Due to the nature of the VR environment, yt is a circular variable—i.e., it should be interpreted as an angle

on the unit circle. In the statistics literature, a regression that predicts a circular variable from linear covariates is known as a circular-

linear regressionmodel. Several approaches to circular-linear regression have been developed (Fisher and Lee, 1992; Pewsey andGar-

cı́a-Portugués, 2020; Sikaroudi and Park, 2019). Here, we used a spherically projected multivariate linear model (Presnell et al., 1998).

Two regression coefficients, b
ð1Þ
n and b

ð2Þ
n , are optimized for each neuron using the expectation maximization routine described by Pre-

snell et al. (1998). After fitting the model to a set of training data, the model estimate for a given set of inputs is given by

byt = atan2

 XN
n= 1

bð1Þ
n snt;

XN
n= 1

bð2Þ
n snt

!

where atan2ð$; $Þ corresponds to the ‘‘2-argument arctangent’’ function. The ‘‘model score’’ referenced in Figure 6 is the average of

cos yt � bytð Þ over time bins in the testing set. Thus, a decoder which randomly guesses angles over the unit circle would have an ex-

pected score of zero, while a perfect decoder would have a score of one. Note that training data was downsampled to match spike

number, position bins, running speed, and number of observations across training sets (map 1, map 2, and both maps) for each ses-

sion. In Figures 6D–6F each point represents the average model score across all 10 possible test sets. In Figure S6D, we performed

the same analysis with synthetic ablations of putative grid cells, putative non-grid spatial cells, and putative non-spatial cells (we ab-

lated an equal number of cells in each case, equal to the minimum number of cells across groups in each session) to test whether

model performance depended on any particular functional cell type.

In Figures 6D and 6G, we compared model performance to performance on a shuffle control. For each map, we created a shuffled

version of that map (i.e., the ‘‘synthetic map’’) in which the neuron labels were permuted and the tuning curves of all neurons were

shifted by a random amount (less than or equal to half the track length). For Figure 6D, we then fit the models on a training set

comprised of each map and its corresponding synthetic map and tested them on unseen data from the same pair of maps. For Fig-

ure 6G, we fit the models on each true map and tested them on the shuffled version of the other map (e.g., fit on the true map 1 and

test on the shuffled map 2).

Spike waveform analysis
Waveforms were extracted from the Kilosort2 data output using our modification of Jennifer Colonell’s fork of the Allen Institute for

Brain Science ecephys library (open source from GitHub: https://github.com/jenniferColonell/ecephys_spike_sorting/). To explicitly

compare waveforms across remap events and across the session (as in Figure S3), we identified stable blocks of 10 or more trials

from each k-means-identifiedmap for all 2-map sessions. For 19/28 2-map sessions, we selected the 10 trials abutting up to 3 remap

events near the beginning, middle, and end of the session (e.g., Figures S3B–S3D, left panels, colors indicate selected trials). For the
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remaining sessions, there were not adjacent trial blocks of 10 or more sessions in each map, and so we selected a matched number

of blocks of 10 trials from each map, up to 3 pairs, from throughout the session. We then extracted the waveforms for up to 1000

spikes randomly chosen from the selected trial blocks (for cells with fewer than 1000 spikes in either the pre- or post-remap trial

block, we extracted an equal number of spikes from each block, equal to the minimum number of spikes across the two blocks).

We then computed the average and standard deviation of thewaveformswithin each trial block using ourmodification of the ecephys

library (e.g., Figures S3B-S3D, right panels).

To determinewaveform similarity across all 2-map sessions, we computed the correlation betweenwaveforms fromdifferentmaps

for each cell (Figure S3A). For both analyses, we first identified the ‘‘best channel’’ for each cell, by identifying the channel closest to

the Kilosort2 depth output for that cell. We then selected just the 20 channels centered on the best channel for each cell (or off-center

from the best channel, if it was within 10 channels of the probe tip) and compared only the waveforms on these 20 channels. We then

calculated the Pearson correlation between the vectorized average waveforms for each pre- and post-remap pair and computed the

average correlation across all pairs (up to three pairs per cell)(Figure S3A).

Tetrode recordings and analysis
The tetrode data included in Figure S3were collected for a previous publication (n = 296 cells from 112 sessions in 19mice) (Campbell

et al., 2018). Because VR gain manipulations as performed for that study can induce remapping of spatial representations, all data

examined for this figure were from ‘‘baseline trials’’ in which no VR manipulation occurred. However, because these mice experi-

enced frequent gain manipulations and were handled by a different experimenter (MGC), we compared these tetrode data to Neuro-

pixels data collected by the same experimenter frommicewho also experienced frequent gainmanipulations, to account for potential

lasting effects of frequent manipulations or effects of handling differences (n = 3,075 cells from 89 sessions in 20 mice) (Campbell

et al., 2020).

For each cell (Neuropixels or tetrodes), we examined a single block of 20 baseline trials in which no VRmanipulation occurred. For

each cell, we computed firing ratemaps in single trials and computed a cross correlationmatrix over the 20 trial block, taking the peak

cross correlation over lags from �20 cm to +20 cm to allow for small shifts. We focused our analysis on cells that were ‘‘spatially

stable’’ within the first 6 trials (defined as having mean trial-trial peak cross correlation > 0.5 in the first 6 trials), and asked how

the rate maps changed in the following 14 trials. To quantify this, we computed the peak cross correlation between each of these

14 trials and each of the 6 ‘‘baseline’’ trials, and averaged over baseline trials. When the pattern remaps, this cross correlation should

be low; when it is stable, it should be high. We performed a statistical comparison of the distribution of cross correlations for cells

recorded with tetrodes to the distribution for cells recorded with Neuropixels probes. Note that the tetrode recordings were per-

formed on a VR track with more salient visual landmarks than that used for Neuropixels recordings, including a clearly delineated

trial structure with teleportations between each trial.

Spatial information calculations
Following the procedures in Skaggs et al. (1996), we calculated spatial information content in bits per second over 2 cm position bins

for each neuron as follows: X
i

pili log 2

�
li

l

�
Where pi is the probability that the animal is in position bin i (occupancy time in position bin i divided by total session time), li is the

average firing rate of the neuron in position bin i, and l is the overall average firing rate for the neuron. Firing rates were computed

empirically (number of spikes in position bin i divided by occupancy time). For Figure 4, spatial information was calculated separately

for each map by first separating trials by their k-means-defined cluster label. Cells were defined as significantly spatial if their spatial

information score was > 95th percentile of a null distribution comprising 1,000 shuffle controls. Shuffleswere computed separately for

eachmap in each session, andwere implemented by shifting all spikes for all cells by a random time interval, up to amaximumof 10 s,

to disrupt the spike/position relationship without changing inter-spike intervals or correlations across cells. ‘‘Spatial cells’’ in Figure 4

and as referred to in the corresponding results section, were significantly spatial in at least one map.

Rate remapping versus global remapping
In order to identify the extent to which each cell remapped across trials, we first divided trials by their 2-factor k-means cluster label.

We then computed the trial-averaged firing rate in 2 cm position bins for each map, smoothing with a 1D Gaussian filter (standard

deviation 2 cm). We quantified the degree of rate remapping in each neuron by the percent change in the peak firing rate (i.e., largest

firing rate in any spatial bin) across the two maps. As a measure of global remapping, we calculated an alignment score between the

normalized firing rate vectors in activity space (i.e., spatial dissimilarity). To do so, we computed the cosine similarity (vector dot prod-

uct after normalization) between the spatial profiles of the within-map averaged firing rates. We then subtracted this value from 1,

such that dissimilarity score of 0 would indicate an identical spatial firing pattern and a score of 1 would indicate orthogonal spatial

representations. These results are reported in Figure 4.
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Functional cell type analysis
Using the gain manipulation described above (and as in Campbell et al., 2018), we identified putative grid cells and putative border

cells. For this analysis, we first removed cells with a mean firing rate R 15Hz (putative high-firing interneurons). We further selected

only cells that were spatially stable in both the 10 trials preceding gain manipulation (‘‘normal trials’’) and in the 5 gain manipulation

trials (‘‘gain manipulation trials’’)(average trial-trial correlation greater than 0.25). We then computed the spatial tuning curves for the

last 10 normal trials and 5 gain manipulation trials and calculated the Pearson correlation between these tuning curves for each cell.

Using the results from Campbell et al. (2018) as a guide, we designated all cells with a normal-gain manipulation correlation greater

than 0.29 as putative border cells and all cells with a normal-gain manipulation correlation less than 0.1 as putative grid cells (Fig-

ure S6A). This method is a rough classification of each cell type, which likely includes some false positives and may falsely reject

some true grid and border cells. We thus first designate these cells as putative grid and putative border cells, but subsequently refer

to them as grid and border cells for simplicity and readability.

In Figures S6F–S6K, we investigated the periodic firing properties of putative grid and border cells. We first split trials by their k-

means identifiedmap. For each trial, we computed the firing rate in 5 cmposition bins and concatenated trials of each type to obtain a

continuous vector of firing rate by absolute distance traveled for each condition. We then computed the spatial autocorrelation of this

signal, up to a maximum distance of 800 cm, normalized such that the maximum autocorrelation at 0 cm = 1. We identified peaks in

this signal with aminimum prominence of 0.05 and compared each peak to a null distribution to determine whether it was higher than

could be expected by chance. The null model was given by a first-order autoregressive process, i.e., an AR(1) model, with no drift

term. The decay parameter of the model was chosen to be 0.55 to roughly match the autocorrelation of cells with small spatial fields.

The autocorrelation function of the AR(1) null model admits a closed-form expression, as covered in standard references on time se-

ries analysis (Chatfield, 1984). To evaluate whether any peak in the empirical autocorrelation function was significant with respect to

this null distribution, we computed Bonferroni-corrected 95% confidence intervals around the observed autocorrelation function. In

Figure S6F-H, we show the autocorrelation for all putative grid and border cells for 3 example sessions, normalized by the maximum/

minimum autocorrelation from all but the first 100 position bins.

Bistable ring attractor model
Attractor networks are a class of circuit models that describe how a recurrently connected population of neurons can sustain internal

representations in the absence of persistent sensory input (Amari, 1977; Samsonovich andMcNaughton, 1997; Seung, 1996). These

model networks are often formulated as a system of differential equations:

t
dx

dt
= � x +f Wx +uð Þ (S.1)

where x˛ℝN denotes a vector of firing rates for a network containing N neurons, W˛RN3N is the ‘‘connectivity matrix’’ holding

synaptic weights, fð $Þ is an elementwise nonlinear activation function, u˛ℝN is a constant input to the network, and t > 0 is

the time constant of the system. We assume that f xð Þ = 1= 1+ exp �xð Þð Þ, though other choices of activation function are possible.

Values of x for which dx=dt = 0 are called fixed points. Of particular interest are attractive fixed points. If x tð Þ denotes the

vector of firing rates at time t, and if x� is a fixed point, then x� is called an attractive fixed point if x tð Þ approaches x� in

the limit of t/N, when the system is initialized sufficiently close to x� (i.e., when x 0ð Þ= x� + d for any vector d˛ RN with suf-

ficiently small norm). Attractor manifolds can be thought of as continuous sets of attractive fixed points. While attractive fixed

points are limited to representing a discrete set of states, attractor manifolds can represent continuous quantities, such as the

orientation of a visual stimulus (Ben-Yishai et al., 1995), motor neuron drive (Seung, 1996), or the animal’s heading direction

(Skaggs et al., 1995).

In our experiments, mice traversed a 1-dimensional virtual hallway that seamlessly looped back to the starting position after

400 cm. This can be thought of as a VR analog to a circular maze environment. If there is stable position coding and it is encoded

on a single attractor manifold, then the topology of the environment implies that the attractor manifold should form a 1-dimensional

ring (a ‘‘ring attractor’’). Further, the velocity of the animal on the track is calibrated to the velocity in neural firing rate space along the

ring attractor so that every physical location on the track is one-to-one matched to a position along the ring. This ring attractor model

is similar to well-known models of interactions among comodular grid cells (Burak and Fiete, 2009; Fuhs and Touretzky, 2006; Gua-

nella et al., 2007). However, while themathematical details we describe below are similar to this past work, there is an important con-

ceptual difference. Namely, our model is meant to include the full MEC circuit, under the assumption that it stores a stable estimate of

the animal’s position. In this respect, our model is most similar to spatial attractor models originally developed and studied in the

context of hippocampal circuits (Samsonovich and McNaughton, 1997). The model we describe is a coarse description of MEC—

e.g., it does not capture the diversity of functionally defined cell types involved in navigation. However, it allows us to demonstrate

a simple possibility for how aligned ringmanifold structures (like those found in our experimental data) might arise in a circuit of recur-

rently connected neurons.

Prior work has found that multiple attractor network connectivities can be linearly combined to create a network with multiple

attractor manifolds that operate independently (Romani and Tsodyks, 2010; Roudi and Treves, 2008; Samsonovich and McNaugh-

ton, 1997; Stringer et al., 2004). That is, to store M attractor manifolds we can set W =
PM

m= 1W
mð Þ, where each WðmÞ˛ℝN3N holds

the connectivity pattern of a single attractor structure. If M � N, and if the maps are sufficiently decorrelated (e.g., if the neuron
Neuron 109, 1–14.e1–e11, September 15, 2021 e9



ll
Article

Please cite this article in press as: Low et al., Dynamic and reversible remapping of network representations in an unchanging environment, Neuron
(2021), https://doi.org/10.1016/j.neuron.2021.07.005
indices are randomly permuted for each WðmÞ), then the attractors can operate independently (Samsonovich and McNaugh-

ton, 1997).

To create a bistable pair of ring attractor, we linearly combined a classic ring attractor connectivity pattern (Figure S7A, left), with a

‘‘winner-take-all’’ connectivity pattern (Figure S7A, right). Intuitively, the winner-take-all pattern creates two sub-populations of neu-

rons that mutually exclude each other from firing. Because the ring attractor structure is present within both sub-populations, two

separated 1D ring attractors are formed, which we can interpret as two spatial maps.

Concretely, we instantiate themodel by defining a fine grid over ring angles, qi = 2pi=N for i˛f1;.;Ng. Additionally, for each neuron

we define a sub-population indicator variable vi = 1 i%N=½ 2� � 1 i >N=½ 2�; where 1[c] is a binary indicator function which evaluates to

one if c is true and zero if c is false. Then, let sð $Þ denote a random permutation of the N neurons, and define the connectivity of the

network to be W = W 1ð Þ +W 2ð Þ, where �
Wð1Þ�

ij
= J1 cosðqi � qjÞ � J0 (S.2)
�
Wð2Þ�

ij
= J2vsðiÞvsðjÞ (S.3)

The connectivity encoded in W(1) implements the ring attractor, while W(2) implements the winner take all connectivity. The three

scalar hyperparameters, J0 > 0, J1 > 0, J2 > 0, respectively determine the strength of a global inhibition term, the strength of con-

nections modulated by the ring, and the strength of the winner-take-all connectivity. For now, we assume the network has no

input, u = 0.

Figure S7B shows Wij and Ws ið Þs jð Þ for a small network with N = 150 neurons; this visualization demonstrates that simply re-

ordering the neurons is sufficient to reveal the two connectivity patterns embedded in the same network. We numerically simulated

a network with N = 10,000 neurons to explore whether this model produced the expected attractor structures. For these simula-

tions we set J0 = J1 = 0:01 and J2 = 0:004. The steady-state of eq. (S.1) is solely determined by the initial state, x 0ð Þ, which we set

equal to

x 0ð Þ½ �i =f cos qi � jð Þ+ εvs ið Þ
� �

(S.4)

where j˛½0; 2pÞ is an angle specifying the tuning of initial activity along the ring, and ε scales the competitive winner-take-all con-

nectivity pattern. When ε> 0 the network activity reliably converges to position c in map 1; conversely, when ε< 0, the network con-

verges to position c on map 2. (We label map 1 and map 2 in this way as a convention for the model.) By varying c and ε, and numer-

ically simulating the firing rate dynamics to steady-state, we recover the expected pair of ring manifolds (Figure S7C).

In contrast to the experimental data, when bothmaps are simultaneously embedded into the same 3D space by PCA, the ringman-

ifolds do not appear aligned (Figure S7C).We then introduced a population of ‘‘shared neurons’’ that participated in both spatial maps

by defining

pi =

(
0 with probability m

1 with probability 1� m
for all i˛f1;.;Ng (S.5)

where m˛½0;1� corresponds to the proportion of ‘‘shared neurons.’’ Then, we modified equation (S.3) to be:�
Wð2Þ�

ij
= J2vsðiÞvsðjÞpipj (S.6)

and set the network input to ui = J4ð1 � piÞfor each neuron. Intuitively, J4 scales additional excitatory input to the ‘‘shared neurons’’

that lack the mutual excitation from the winner-take-all connectivity. We set J4 = 4 in our numerical simulations. Figure S7D displays

the connectivity of a circuit with shared neural population (compare with Figure S7B).

When the proportion of shared neurons, m, is appropriately tuned, the ring manifolds appear geometrically aligned in PCA embed-

dings (Figure S7E). As done for the experimental data in Figure 4, we used Procrustes analysis to quantify manifold misalignment

scores, which range between zero (perfect alignment) and one (RMSE misalignment equal to a shuffle control). Increasing m mono-

tonically improved the ring alignment in simulations (Figure S7F).

Finally, to numerically simulate remapping events and demonstrate that each ring attractor is locally stable and capable of

operating independently, we introduced a noise term (formally, Brownian motion) into the dynamics equation (S.1). We

numerically integrated stochastic instantiations of the system by the Euler–Maruyama method. Inspired by the experimental

findings in Figures 7K and 7L, we use a mix of isotropically distributed noise with occasional perturbations preferentially

oriented in the dimension separating the manifolds. These directed perturbations occasionally push the network activity

from one ring attractor to the other, resulting in a remap event (Videos S1 and S2). Overall, this preliminary model captures

two key features of the experimental data—geometric alignment of two ring manifolds, and a reversible remapping

mechanism.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics
All data were analyzed in Python, using the scipy stats library to compute statistics, except for data in Figures S3E–S3G, which were

analyzed in MATLAB. Unless otherwise noted, all tests are two-sided, correlation coefficients represent Pearson’s correlation, and

values are presented as mean ± standard error of the mean (SEM). Non-parametric tests were used to assess significance, specif-

ically Wilcoxon signed-rank tests for paired data, Wilcoxon rank-sum tests for unpaired data, and Kruskal-Wallis H-tests for compar-

isons of > 2 values. Data collection and analysis were not performed blind to the conditions of the experiments. No statistical methods

were used to predetermine sample sizes, but our sample sizes are consistent with previous similar studies.
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