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Abstract Nervous system function requires intracellular transport of channels, receptors,

mRNAs, and other cargo throughout complex neuronal morphologies. Local signals such as

synaptic input can regulate cargo trafficking, motivating the leading conceptual model of neuron-

wide transport, sometimes called the ‘sushi-belt model’ (Doyle and Kiebler, 2011). Current theories

and experiments are based on this model, yet its predictions are not rigorously understood. We

formalized the sushi belt model mathematically, and show that it can achieve arbitrarily complex

spatial distributions of cargo in reconstructed morphologies. However, the model also predicts an

unavoidable, morphology dependent tradeoff between speed, precision and metabolic efficiency

of cargo transport. With experimental estimates of trafficking kinetics, the model predicts delays of

many hours or days for modestly accurate and efficient cargo delivery throughout a dendritic tree.

These findings challenge current understanding of the efficacy of nucleus-to-synapse trafficking and

may explain the prevalence of local biosynthesis in neurons.

DOI: 10.7554/eLife.20556.001

Introduction
Dendritic and axonal trees of neurons often have many tens or even thousands of branches that can

extend across the entire nervous system. Distributing biomolecular cargo within neuronal morpholo-

gies is therefore a considerable logistical task, especially for components that are synthesized in

locations distant from their site of use. Nonetheless, molecular transport is important for many neu-

rophysiological processes, such as synaptic plasticity, neurite development and metabolism. For

example, long-lasting forms of synaptic plasticity appear to depend on anterograde transport of

mRNAs (Nguyen et al., 1994; Bading, 2000; Kandel, 2001) and specific mRNAs are known to be

selectively transported to regions of heightened synaptic activity (Steward et al., 1998;

Steward and Worley, 2001; Moga et al., 2004) and to developing synaptic contacts (Lyles et al.,

2006).

On the other hand, local biosynthesis and component recycling are known to support dendritic

physiology, including some forms of synaptic plasticity (Kang and Schuman, 1996; Aakalu et al.,

2001; Vickers et al., 2005; Sutton and Schuman, 2006; Holt and Schuman, 2013) and mainte-

nance of cytoskeletal, membrane and signalling pathways (Park et al., 2004, 2006; Grant and

Donaldson, 2009; Zheng et al., 2015). Neurons therefore rely on a mixture of local metabolism and

global transport, but the relative contributions of these mechanisms are not understood. Analyzing

Williams et al. eLife 2016;5:e20556. DOI: 10.7554/eLife.20556 1 of 25

RESEARCH ARTICLE



the performance of global trafficking provides a principled way to understand the division of labor

between local and global mechanisms.

In this paper, we examine how well trafficking can perform given what we know about active

transport and the typical morphologies of neurites. There are two parts to this question. First, how

can active transport achieve specific spatial distributions of cargo using only local signals? Second,

how long does it take to distribute cargo to a given degree of accuracy and what factors contribute

to delays?

Intracellular trafficking is being characterized in increasing detail (Buxbaum et al., 2014b; Han-

cock, 2014; Wu et al., 2016). Microscopic cargo movements are stochastic, bidirectional, and inho-

mogeneous along neurites, leading to to the hypothesis that trafficking is predominantly controlled

by local pathways that signal demand for nearby cargo, rather than a centralized addressing system

(Welte, 2004; Bressloff and Newby, 2009; Newby and Bressloff, 2010a; Doyle and Kiebler,

2011; Buxbaum et al., 2015). These local signals are not fully characterized, but there is evidence

for multiple mechanisms including transient elevations in second-messengers like Ca2þ and ADP

(Mironov, 2007; Wang and Schwarz, 2009), glutamate receptor activation (Kao et al., 2010;

Buxbaum et al., 2014b), and changes in microtubule-associated proteins (Soundararajan and Bull-

ock, 2014).

A leading conceptual model ties together these details by proposing that local signalling and reg-

ulation of bidirectional trafficking determines the spatial distribution of cargo in neurons

(Welte, 2004; Buxbaum et al., 2015). Doyle and Kiebler (2011) call this the ‘sushi belt model’. In

this analogy, molecular cargoes are represented by sushi plates that move along a conveyor belt, as

in certain restaurants. Customers sitting alongside the belt correspond to locations along a dendrite

that have specific and potentially time-critical demand for the amount and type of sushi they con-

sume, but they can only choose from nearby plates as they pass.

eLife digest Neurons are the workhorses of the nervous system, forming intricate networks to

store, process and exchange information. They often connect to many thousands of other cells via

intricate branched structures called neurites. This gives neurons their complex tree-like shape, which

distinguishes them from many other kinds of cell.

However, like all cells, neurons must continually repair and replace their internal components as

they become damaged. Neurons also need to be able to produce new components at particular

times, for example, when they establish new connections and form memories. But how do neurons

ensure that these components are delivered to the right place at the right time? In some cases

neurons simply recycle components or make new ones where they are needed, but experiments

suggest that they transport other essential components up and down neurites as though on a

conveyor belt. Individual parts of a neuron are believed to select certain components they need

from those that pass by. But can this system, which is known as the sushi-belt model, distribute

material to all parts of neurons despite their complex shapes?

Using computational and mathematical modeling, Williams et al. show that this model can indeed

account for transport within neurons, but that it also predicts certain tradeoffs. To maintain accurate

delivery, neurons must be able to tolerate delays of hours to days for components to be distributed.

Neurons can reduce these delays, for example, by manufacturing more components than they need.

However, such solutions are costly. Tradeoffs between the speed, accuracy and efficiency of delivery

thus limit the ability of neurons to adapt and repair themselves, and may constrain the speed and

accuracy with which they can form new connections and memories.

In the future, experimental work should reveal whether the relationships predicted by this model

apply in real cells. In particular, studies should examine whether neurons with different shapes and

roles fine-tune the delivery system to suit their particular needs. For example, some neurons may

tolerate long delays to ensure components are delivered to the exactly the right locations, while

others may prioritize speedy delivery.

DOI: 10.7554/eLife.20556.002
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Stated in words, the sushi belt model is an intuitive, plausible account of the molecular basis of

cargo distribution. Yet it is unclear whether this model conforms to intuition, and whether it implies

unanticipated predictions. Can this trafficking system accurately generate global distributions of

cargo using only local signals? Does the model predict cross-talk, or interference between spatially

separated regions of the neuron that require the same kind of cargo? How quickly and how accu-

rately can cargo be delivered by this model, given what is known about trafficking kinetics, and do

these measures of performance depend on morphology or the spatial pattern of demand?

We address these questions using simple mathematical models that capture experimentally mea-

sured features of trafficking. We confirm that the sushi-belt model can produce any spatial distribu-

tion of cargo in complex morphologies. However, the model also predicts that global trafficking

from the soma is severely limited by tradeoffs between the speed, efficiency, robustness, and accu-

racy of cargo delivery. Versions of the model predict testable interactions between trafficking-

dependent processes, while the model as a whole suggests that time-critical processes like synaptic

plasticity may be less precise, or less dependent on global transport than is currently assumed.

Results

A simple model captures bulk behaviour of actively transported cargo
Transport along microtubules is mediated by kinesin and dynein motors that mediate anterograde

and retrograde transport, respectively (Block et al., 1990; Hirokawa et al., 2010; Gagnon and

Mowry, 2011). Cargo is often simultaneously bound to both forms of motor protein, resulting in sto-

chastic back-and-forth movements with a net direction determined by the balance of opposing

movements (Welte, 2004; Hancock, 2014; Buxbaum et al., 2014a, Figure 1A). We modelled this

process as a biased random walk, which is general enough to accommodate variations in biophysical

details (Bressloff, 2006; Bressloff and Earnshaw, 2007; Müller et al., 2008; Bressloff and Newby,

2009; Newby and Bressloff, 2010a; Bressloff and Newby, 2013).

Figure 1 shows this model in a one-dimensional cable, corresponding to a section of neurite. In

each unit of time the cargo moves a unit distance forwards or backwards, or remains in the same

place, each with different probabilities. In the simplest version of the model, the probabilities of for-

ward and backward jumps are constant for each time step (Figure 1B, top panel). Cargo can also

undergo extended unidirectional runs (Klumpp and Lipowsky, 2005; Müller et al., 2008; Han-

cock, 2014). The model can account for these runs with jump probabilities that depend on the previ-

ous movement of the particle (Figure 1B, bottom panel, Materials and methods).

While the movement of individual cargoes is stochastic, the spatial distribution of a population

(Figure 1C) changes predictably. This is seen in Figure 1D, which shows the distribution of 1000

molecules over time, without (top panel) and with (bottom panel) unidirectional runs. The bulk distri-

bution of cargo can therefore be modelled as a deterministic process that describes how cargo con-

centration spreads out in time.

A convenient and flexible formulation of this process is a mass-action model (Voit et al., 2015)

that spatially discretizes the neuron into small compartments. In an unbranched neurite with N com-

partments, the mass-action model is:

u1
b1

*)
a1
u2

b2

*)
a2
u3

b3

*)
a3
:::

bN�1

*)
aN�1

uN (1)

where ui is the amount of cargo in each compartment, and ai and bi denote trafficking rate constants

of cargo exchange between adjacent compartments. This model maps onto the well-known drift-dif-

fusion equation when the trafficking rates are spatially homogeneous (Figure 1E; Smith and Sim-

mons, 2001). We used this to constrain trafficking rate constants based on single-particle tracking

experiments (Dynes and Steward, 2007) or estimates of the mean and variance of particle positions

from imaging experiments (Roy et al., 2012, see Materials and methods).

With a compartment length of 1 mm, the simulations in Figure 1D gave mean particle velocities

of 15 mm per minute, which is within the range of experimental observations for microtubule trans-

port (Rogers and Gelfand, 1998; Dynes and Steward, 2007; Müller et al., 2008). The variances of

the particle distributions depended on whether unidirectional runs are assumed, and respectively

grew at a rate of ~0.58 and ~1.33 mm2 per second for the top and bottom panels of Figure 1D. The
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mass action model provides a good fit to both cases (Figure 1F). In general, the apparent diffusion

coefficient of the model increases as run length increases (Figure 1—figure supplement 1A). The

accuracy of the mass-action model decreases as the run length increases. However, the model

remains a reasonable approximation for many physiological run lengths and particle numbers, even

over a relatively short time window of 100 s (Figure 1—figure supplement 1B).

Biophysical formulation of the sushi belt model
The advantage of the mass action model is that it easily extends to complex morphologies with spa-

tially non-uniform trafficking rates, and can accommodate additional processes, including sequestra-

tion of cargo. The sushi-belt model (Doyle and Kiebler, 2011) proposes that local mechanisms

modify local trafficking rates and capture cargo as it passes. For these local signals to encode the

demand for cargo, some feedback mechanism must exist between the local concentration of cargo
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Figure 1. Constructing a coarse-grained model of intracellular transport. (A) Cartoon of a single cargo particle on a microtubule attached to opposing

motor proteins. (B) Three example biased random walks, representing the stochastic movements of individual cargoes. (Top panel) A simple random

walk with each step independent of previous steps. (Bottom panel) Adding history-dependence to the biased random walk results in sustained

unidirectional runs and stalls in movement. (C) Cartoon of a population of cargo particles being transported along the length of a neurite. (D)

Concentration profile of a population of cargoes, simulated as 1000 independent random walks along a cable/neurite. (Top panel) simulations without

runs. (Bottom panel) Simulations with runs. (E) In the limit of many individual cargo particles, the concentration of particles u is described by a drift

diffusion model whose parameters, a and b, map onto the mass action model (Equation 1). (F) The mass-action model provides a good fit to the

simulations of bulk cargo movement in (D). (Top panel) Fitted trafficking rates for the model with no runs were a » 0.42 s�1, b » 0.17 s�1. (Bottom

panel) Fitting the model with runs gives a » 0.79 s�1, b » 0.54 s�1.

DOI: 10.7554/eLife.20556.003

The following figure supplement is available for figure 1:

Figure supplement 1. The effect of cargo run length on mass-action model fit and diffusion coefficient.

DOI: 10.7554/eLife.20556.004
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and the signal itself. There are many biologically plausible mechanisms for locally encoding demand

(see Materials and methods). For our main results, we did not focus on these details and simply

assumed a perfect demand signal. We have thus addressed the performance of the transport mech-

anism per se, with the most forgiving assumptions about the reliability of the demand signal.

The mass action model of sushi-belt transport is:

u1
b1

*)
a1

u2
b2

*)
a2

u3
b3

*)
a3

u4
b4

*)
a4
:::

c1

?
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y

c4

?
?
?
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y

u$
1

u$
2

u$
3

u$
4

(2)

where u represents the concentration of cargo on the network of microtubules, indexed by the com-

partment. In each compartment, molecules can irreversibly detach from the microtubules in a reac-

tion ui !
ci
u$i , where u$i denotes the detached cargo. Biologically, cargo will eventually degrade.

However, in this study we are concerned with how cargo can be rapidly distributed so that detached

cargo can satisfy demand for at least some time. Therefore, for simplicity we assume degradation

rates are effectively zero.

We first asked whether modifying the trafficking rates alone was sufficient to reliably distribute

cargo. Thus, we set all detachment rate constants (ci) to zero, and considered a model with traffick-

ing only between compartments, as shown in Figure 2A. Mathematical analysis shows that, for a

fixed set of trafficking parameters, the distribution of cargo approaches a unique steady-state distri-

bution over time, regardless of the initial distribution of cargo. The steady-state occurs when the

ratio of cargo concentrations between neighboring compartments is balanced by the trafficking

rates:

up

uc

�
�
�
�
�
ss

¼ b

a
(3)

where up is the level in a ‘parent’ compartment (closer to soma), uc is the level in the adjacent ‘child’

compartment (closer to periphery) and b and a are the trafficking rate constants between these

compartments.

If ~ui represents the local demand signal in compartment i, then Equation (3) gives the condition

for cargo distribution to match demand:

b

a
¼ ~up

~uc
(4)

An example demand profile and the corresponding trafficking rate relationships are shown in

Figure 2B. This condition ensures that cargo is delivered in proportion to local demand. The abso-

lute concentration at steady-state is determined by the total amount of cargo produced (Figure 2—

figure supplement 1); in the case of mRNA, this might be controlled at the somatic compartment

by transcriptional regulation. In this paper, we focus on the relative accuracy of cargo distribution

when some fixed amount of cargo is produced at the soma.

To illustrate demand-modulated trafficking in a realistic setting, we used a reconstructed model

of a CA1 pyramidal neuron (Migliore and Migliore, 2012). To provide a demand signal, we mod-

elled excitatory synaptic input at 120 locations within three dendritic regions (red dots, Figure 2C)

and set demand, (~ui), equal to the average membrane potential in each electrical compartment (see

Materials and methods). As expected, cargo was transported selectively to regions of high synaptic

activity (Video 1), matching the demand profile exactly at steady state (Figure 2D). Therefore, local

control of trafficking rates (equivalently, motor protein kinetics) can deliver cargo to match arbitrarily

complex spatial demand.

Transport bottlenecks occur when trafficking rates are non-uniform
We next investigated the consequences of solely modifying trafficking rates to distribute cargo. A

particularly striking prediction of this model is that changes in trafficking (or, equivalently, demand

signals) in regions close to the soma can strongly affect cargo delivery times to distal sites. As the
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demand signal ~ui approaches zero in a compartment, the trafficking rates into that compartment

also approach zero, cutting off the flow of cargo along the neurite (Figure 3A). The smallest demand

signal, �, often determines the rate-limiting time constant for cargo delivery to an entire dendritic

tree. We refer to this scenario as a ‘transport bottleneck.’ Figure 3A–C illustrate how decreasing �

to zero causes arbitrarily slow delivery of cargo in a simple three-compartment model.

To illustrate bottlenecks in a more realistic setting, we imposed a bottleneck in the reconstructed

CA1 model by setting demand in the middle third of the apical dendrite to a lower level than the

rest of the dendritic tree, which was set uniformly high. As expected, the cargo distribution con-

verged much more quickly for uniform demand than with a bottleneck present (Figure 3D).

However, less intuitive effects are seen on the convergence times of cargo in specific compart-

ments. Figure 3E plots convergence time for ui to reach a fraction of the steady state value for each

compartment. While distal compartments showed prolonged convergence times, (Figure 3E, upper

right portion of plot), the bottleneck shortened the transport delay to proximal compartments

(Figure 3E, lower left portion of plot). This occurs because the bottleneck decreases the effective

size of proximal part the neuron: cargo spreads efficiently throughout the proximal dendrites, but

traverses the bottleneck more slowly.

Another counterintuitive effect is seen when demand varies independently at proximal and distal

locations, as might occur during selective synaptic stimulation (see e.g., Han and Heinemann,

2013). In Figure 3F we simulated demand at proximal and distal portions of the apical dendrite

independently and quantified the total convergence time. Proximal demand alone (Figure 3F ‘proxi-

mal’) resulted in the fastest convergence time. Convergence was slowest when the demand was
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Figure 2. Local trafficking rates determine the spatial distribution of biomolecules by a simple kinetic relationship. (A) The mass action transport model

for a simple branched morphology. (B) Demonstration of how trafficking rates can be tuned to distribute cargo to match a demand signal. Each pair of

rate constants (fa1; b1g, fa2; b2g) was constrained to sum to one. This constraint, combined with the condition in Equation (4), specifies a unique

solution to achieve the demand profile. (C) A model of a CA1 pyramidal cell with 742 compartments adapted from (Migliore and Migliore, 2012).

Spatial cargo demand was set proportional to the average membrane potential due to excitatory synaptic input applied at the locations marked by red

dots. (D) Convergence of the cargo concentration in the CA1 model over time, t (arbitrary units).

DOI: 10.7554/eLife.20556.005

The following figure supplement is available for figure 2:

Figure supplement 1. Equation 4 specifies the relative distribution of cargo, changing the total amount of cargo scales this distribution.

DOI: 10.7554/eLife.20556.006
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restricted to distal dendrites (Figure 3F, ‘distal’).

Interestingly, when both distal and proximal sites

signalled demand (Figure 3F ‘both’), conver-

gence was substantially faster than the distal-only

case, even though cargo still needed to reach the

distal neurites. Uniform demand across the entire

tree (Figure 3F ‘entire cell’) resulted in a similarly

short convergence time.

Together, these results show that locally mod-

ulating trafficking movements will have testable

effects on global transport times. The presence

and relative contribution of this mechanism can

be probed experimentally by characterizing the

convergence rate of a cargo that aggregates at

recently activated synapses, such as Arc mRNA

(Steward et al., 1998). This could be achieved

using quantitative optical measurements in com-

bination with synaptic stimulation at specific syn-

aptic inputs.

Local control of trafficking and
detachment results in a family of
trafficking strategies
We next considered the full sushi-belt model

(Equation 2) with local demand signals control-

ling both trafficking and detachment rate con-

stants (Figure 4A). This provides additional

flexibility in how cargo can be distributed, since

the model can distribute cargo by locally modulating trafficking rates, detachment rates, or both

(Figure 4B). If trafficking is much faster than detachment (a; b � c), then the previous results (Fig-

ures 2–3) remain relevant since the distribution of cargo on the microtubules will approach a quasi-

steady state described by equation (3); cargo may then detach at a slow, nonspecific rate (ci ¼ con-

stant, with c � a; b). Figure 4C shows an example of this scenario, which we call demand-dependent

trafficking (DDT). The spatial distribution of cargo is first achieved along the microtubules (red line,

Figure 4C), and maintained as cargo detaches (blue line, Figure 4C).

Alternatively, models can match demand by modulating the detachment process rather than

microtuble trafficking. In this case, the trafficking rates are spatially uniform (ai ¼ bi) so that cargo

spreads evenly, and the detachment rates are set proportionally to the local demand, ~u$i :

ci /
~ui

$

~ui
(5)

The result of this strategy, which we call demand-dependent detachment (DDD), is shown in

Figure 4D. Unlike DDT, DDD avoids the transport bottlenecks examined in Figure 3, and can

achieve target patterns with ~u$i equal to zero in certain compartments by setting ci ¼ 0.

Mixed strategies that locally modulate both detachment and trafficking are also able to deliver

cargo to match demand. Figure 4E shows the behavior of a model whose parameters are a linear

interpolation between pure DDT and DDD (see Materials and methods).

Rapid cargo delivery in the sushi-belt model is error-prone
Although it is mathematically convenient to separate the timescales of trafficking and detachment in

the model, this separation may not exist in biological systems tuned for rapid transport. However,

removal of timescale separation in the sushi-belt model results in mistargeted delivery of cargo, as

we now show.

We returned to the CA1 model of Figures 2–4 and considered a scenario where there is demand

for cargo at the distal apical dendrites (Figure 5A). If the detachment rate constants are sufficiently

Video 1. Distribution of trafficked cargo over

logarithmically spaced time points in a CA1 pyramidal

cell model adapted from (Migliore and Migliore,

2012). Cargo was trafficked according to Equation 4

to match a demand signal established by stimulated

synaptic inputs (see Figure 2C). Time and cargo

concentrations are reported in arbitrary units.

DOI: 10.7554/eLife.20556.007
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slow, then, as before, delivered cargo matched demand nearly exactly in both the DDT and DDD

models (Figure 5A, left). Increasing detachment rates led to faster convergence, but resulted in

cargo leaking off the microtubule on the way to its destination (Figure 5A, right). Thus, for a fixed

trafficking timescale, there is a tradeoff between the speed and accuracy of cargo delivery. The

tradeoff curve shown in Figure 5B shows that both accuracy and convergence time decreased

smoothly as the detachment rates were increased. This tradeoff was present regardless of whether

the trafficking rates (Figure 5B, red line) or detachment rates (Figure 5B, blue line) were modified

to meet demand (compare to Figure 4C and D, respectively). However, DDD outperformed DDT in

this scenario, since the latter caused bottlenecks in proximal dendrites.

We considered a second scenario in which there was a uniform distribution of demand through-

out the entire apical tree (Figure 5C). As before, fast detachment led to errors for both transport
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Figure 3. Transport bottlenecks caused by cargo demand profiles. (A) A three-compartment transport model, with the middle compartment generating

a bottleneck. The vertical bars represent the desired steady-state concentration of cargo in each compartment. The rate of transport into the middle

compartment is small (�, dashed arrows) relative to transport out of the middle compartment. (B) Convergence of cargo concentration in all

compartments of model in (A) for decreasing relative bottleneck flow rate, �. (C) Simulations (black dots) confirm that the time to convergence is given

by the smallest non-zero eigenvalue of the system (solid curve). (D) Convergence to a uniform demand distribution (red line) is faster than a target

distribution containing a bottleneck (blue line) in the CA1 model. Total error is the sum of the absolute difference in concentration from demand (L1
norm). Neuron morphologies are color-coded according to steady state cargo concentration. (E) Transport delay for each compartment in the CA1

model (time to accumulate 0.001 units of cargo). (F) Bar plot comparison of the convergence times for different spatial demand distributions in the CA1

model (steady-state indicated in color plots). The timescale for all simulations in the CA1 model was normalized by setting ai þ bi ¼ 1 for each

compartment.
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strategies, this time by occluding cargo delivery to distal synaptic sites (Figure 5C, right). A smooth

tradeoff between speed and accuracy was again present, but, in contrast to Figure 5A–B, the DDT

model outperformed DDD (Figure 5D). Intuitively, DDT is better in this case because DDD results in

cargo being needlessly trafficked to the basal dendrites.

Together, these results show that increasing the speed of cargo delivery comes at the cost of

accuracy, and that the performance of different trafficking strategies depends on the spatial profile

of demand. The balance between demand-dependent trafficking and detachment could be probed

experimentally. For example, one could perform an experiment in which distal and proximal synaptic

pathways are stimulated independently, while optically monitoring the trafficking of proteins and
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Figure 4. Multiple strategies for transport with trafficking and cargo detachment controlled by local signals. (A) Schematic of microtubular transport

model with irreversible detachment in a branched morphology. (B) Multiple strategies for trafficking cargo to match local demand (demand = ~u$). (Top)

The demand-dependent trafficking mechanism (DDT). When the timescale of detachment is sufficiently slow, the distribution of cargo on the

microtubules approaches a quasi-steady-state that matches ~u$ spatially. This distribution is then transformed into the distribution of detached cargo, u$.

(Bottom) The demand dependent detachment (DDD) mechanism. Uniform trafficking spreads cargo throughout the dendrites, then demand is matched

by slowly detaching cargo according to the local demand signal. An entire family of mixed strategies is achieved by interpolating between DDT and

DDD. (C–E) Quasi-steady-state distribution of cargo on the microtubules (u, red) and steady-state distribution of detached cargo (u$, blue), shown with

a demand profile (~u$, black) for the various strategies diagrammed in panel B. The demand profile is shown spatially in the color-coded CA1 neuron in

the right of panel C. Detached cargo matches demand in all cases.
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mRNAs that are known to be selectively distributed at recently activated synapses. Interactions of

the kind seen in Figure 5A,C and Figure 3F would allow one to infer whether DDT, DDD or a mix-

ture of both strategies are implemented biologically.

Fine-tuned trafficking rates and cargo recycling introduce new
tradeoffs
We next wanted to understand (a) how severe the speed-accuracy tradeoff might be, given experi-

mental estimates of neuron size and trafficking kinetics, and (b) whether simple modifications to the

sushi-belt model could circumvent this tradeoff. We examined the DDD model in an unbranched

cable with a realistic neurite length (800 mm) and an optimistic diffusion coefficient of 10 mm2 s�1,

which we set by inversely scaling the trafficking rate constants with the squared compartment length
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Figure 5. Tradeoffs in the performance of trafficking strategies depends on the spatial pattern of demand. (A) Delivery of cargo to the distal dendrites

with slow (left) and fast detachment rates (right) in a reconstructed CA1 neuron. The achieved pattern does not match the target distribution when

detachment is fast, since some cargo is erroneously delivered to proximal sites. (B) Tradeoff curves between spatial delivery error and convergence rate

for the DDT (red line, see Figure 4C) and DDD (blue line, see Figure 4D) trafficking strategies. (C–D) Same as (A–B) but with uniform demand

throughout proximal and distal locations. The timescale of all simulations was set by imposing the constraint that ai þ bi ¼ 1 for each compartment, to

permit comparison.
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(see Materials and methods and Figure 6—figure supplement 1). All cargo began in the leftmost

compartment and was delivered to a small number of demand ‘hotspots’ (black arrows, Figure 6A).

Similar results were found when the DDT model was examined in this setting (data not shown).

When the detachment timescale was sufficiently slow, the cargo was distributed evenly across the

demand hotspots, even when the spatial distribution of the hotspots was changed (Figure 6A1;

Video 2). Increasing the detachment rate caused faster convergence, but erroneous delivery of

cargo. In all cases, hotspots closer to the soma received disproportionate high levels of cargo

(Figure 6A2; Video 3). Importantly, the tradeoff between these extreme cases was severe: it took

over a day to deliver 95% of cargo with 10% average error, and over a week to achieve 1% average

error (blue line, Figure 6B).

We next attempted to circumvent this tradeoff by two strategies. First, motivated by the observa-

tion that too much cargo was delivered to proximal sites in Figure 6A2, we increased the
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Figure 6. Tuning the DDD model for speed and specificity results in sensitivity to the target spatial distribution of cargo. (A) Cargo begins on the left

end of an unbranched cable to be distributed equally amongst several demand ‘hotspots’. Steady-state cargo profiles (red) are shown for three

different models (A1, A2, A3) and three different spatial patterns of demand (rows). The bottom panel shows an upregulated anterograde trafficking

profile introduced to reduce delivery time in A3; soma is at the leftmost point of the cable. (A1) A model with sufficiently slow detachment achieves

near-perfect cargo delivery for all demand patterns. (A2) Making detachment faster produces quicker convergence, but errors in cargo distribution. (A3)

Transport rate constants, ai and bi, were tuned to optimize the distribution of cargo for the first demand pattern (top row); detachment rate constants

were the same as in model A2. (B) Tradeoff curves between non-specificity and convergence rate for six evenly spaced demand hotspots (the top row

of panel A). Tradeoff curves are shown for the DDD model (blue line) as well as models that combine DDD with the upregulated anterograde trafficking

profile (as in A, bottom panel). Marked points denote where models A1, A2, A3 sit on these tradeoff curves. (C) Tradeoff curves for randomized

demand patterns (six uniformly placed hotspots). Ten simulations are shown for the DDD model with (red) and without (blue) anterograde trafficking

upregulation.

DOI: 10.7554/eLife.20556.011

The following figure supplement is available for figure 6:

Figure supplement 1. Changing compartment size over an order of magnitude leads to insignificant changes in model behavior when trafficking rates

are appropriately scaled (i.e. ai and bi are inversely scaled to the squared compartment length; the diffusion coefficient converges to 10 mm2 s�1 as the

compartment size shrinks to zero).
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anterograde trafficking rate of cargo near the

soma so that more cargo would reach distal

sites. By carefully fine-tuning a linearly decreasing profile of trafficking bias (illustrated in Figure 6A,

bottom panel), we obtained a model (Figure 6A3; Video 4) that provided accurate and fast delivery

(within 10% error in 200 min) for a distribution of six, evenly placed hotspots.

However, this model’s performance was very sensitive to changes in the spatial pattern of

demand (Figure 6A3, middle and bottom; Video 5). Increasing the anterograde trafficking rates

produced nonmonotonic speed-accuracy tradeoff curves (green, red, and cyan curves Figure 6B),

indicating that the detachment rates needed to be fine-tuned to produce low error. Randomly alter-

ing the spatial profile of demand hotspots resulted in variable tradeoff curves for a fine-tuned traf-

ficking model (red lines, Figure 6C); an untuned model was able to achieve more reliable cargo

delivery albeit at the cost of much slower delivery times (blue lines, Figure 6C).

Next, we considered a variant of the sushi-belt model that allowed for the reversible detachment/

reattachment of cargo from the microtubules (Figure 7A):
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Inspection of this scheme reveals that it is similar in form to the DDT model analyzed in Figure 2

and 3: the reversible detachment step simply adds an additional transient state in each compart-

ment. As we noted in the DDT model, cargo distributions can match demand over time with arbi-

trarily low error (see Equation 4). However, transport delays still exist. While releasing cargo to the

wrong location is not an irreversible error, it slows delivery by temporarily arresting movement –

known as a diffusive trap (see e.g. Bressloff and Earnshaw, 2007.

We found that cargo recycling creates a new tradeoff between convergence time and excess

cargo left on the microtubules. Models that deliver a high percentage of their cargo (ci>di) converge

more slowly since they either release cargo into the diffusive traps (Figure 7A1) or have a slow

detachment process (Figure 7A2). Models that deliver a low percentage of their cargo (di>ci) con-

verge quickly since they release little cargo into diffusive traps, allowing cargo to travel along the

microtubules and reach all destinations within the neuron (Figure 7A3). Figure 7B shows the conver-

gence of the three examples (A1, A2 and A3) over time. Figure 7C shows that the new tradeoff

between cargo utilization and convergence time is similarly severe to the speed-accuracy tradeoff in

Video 2. A model with slow detachment rate

accurately distributes cargo to six demand hotspots in

an unbranched cable. The spatial distribution of

detached cargo (bottom subplot) and cargo on the

microtubules (top subplot) are shown over

logarithmically spaced timepoints. Compare to

Figure 6A1 (top row).

DOI: 10.7554/eLife.20556.013

Video 3. A model with a fast detachment rate

misallocates cargo to six demand hotspots in an

unbranched cable. The spatial distribution of detached

cargo (bottom subplot) and cargo on the microtubules

(top subplot) are shown over logarithmically spaced

timepoints. Proximal demand hotspots receive too

much cargo, while distal regions receive too little.

Compare to Figure 6A2 (top row).

DOI: 10.7554/eLife.20556.014
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the sushi-belt model without reattachment. Mod-

els with reattachment that utilize cargo efficiently (for example, Figure 7A2) converge on similarly

slow timescales to models without reattachment that deliver cargo accurately (for example,

Figure 6A1). Models with less than 10% excess cargo required more than a day to reach steady-

state within a tolerance of 10% mean error. On the other hand, models that converged around 103

minutes (17 hr) required more than 90% of cargo to remain in transit at steady-state (Figure 7C).

Distinct cell-type morphologies face order of magnitude differences in
speed, precision and efficiency of trafficking
To establish the biological significance of these findings, we examined tradeoffs between speed,

precision and excess cargo in reconstructed morphologies of five neuron cell types, spanning size

and dendritic complexity (Figure 8A). We simulated trafficking and delivery of cargo to a spatially

uniform target distribution in each cell type to reveal morphology-dependent differences. In all cases

we used optimistic estimates of transport kinetics, corresponding to a diffusion coefficient of 10

mm2 s�1 (the rate constants were normalized to compartment size as in Figure 6—figure supple-

ment 1).

Figure 8B shows spatial plots of the distribution of cargo on the microtubules (ui, cyan-to-

magenta colormap) and the distribution of delivered cargo (u$i , black-to-orange colormap) for a

model with an irreversible detachment rate of 8 � 10�5 s�1. These parameters produce a relatively

slow release of cargo: for each morphology, a sizable fraction of the cargo remains on the microtu-

bules at ~3 hr, and it takes ~1–2 days to release all of the cargo. While the speed of delivery is

roughly equivalent, the accuracy varied across the neural morphologies. The hippocampal granule

cell converged to very low error (~11.7% mean error), while the larger L5 pyramidal cell converged

to ~27.7% error. The smaller, but more elaborately branched, Purkinje cell converged to a similarly

high average error of ~29.1%.

As before, faster detachment rates produce faster, but less accurate, delivery; while slower

detachment rates produce more accurate, but slower, delivery. These tradeoffs across the entire

family of regimes are plotted in Figure 8C (left). Adding a reattachment process largely preserved

the effect of morphology on transport tradeoffs (Figure 8C, right). We fixed the detachment rate to

be fast, since fast detachment produced the most favorable tradeoff in Figure 7C. Tradeoffs

between excess cargo and speed of delivery emerged as the reattachment rate was varied

(Figure 8C, right) and were more severe for the Purkinje cell and L5 pyramidal cell, and least severe

for the Granule cell. Morphology itself therefore influences the relationship between delivery speed

and precision, and/or excess cargo required, suggesting that different cell types might benefit from

different trafficking strategies.

Video 4. Fine-tuning the trafficking rates in a model

with fast detachment produces fast and accurate

deliver of cargo to six demand hotspots in an

unbranched cable. The spatial distribution of detached

cargo (bottom subplot) and cargo on the microtubules

(top subplot) are shown over logarithmically spaced

timepoints. Compare to Figure 6A3 (top row).

DOI: 10.7554/eLife.20556.015

Video 5. The model fine-tuned for fast and accurate

deliver of cargo to six demand hotspots misallocates

cargo to three demand hotspots. The spatial

distribution of detached cargo (bottom subplot) and

cargo on the microtubules (top subplot) are shown

over logarithmically spaced timepoints. Compare to

Figure 6A3 (middle row).

DOI: 10.7554/eLife.20556.016
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Discussion
The molecular motors that drive intracellular transport are remarkably efficient, achieving speeds of

approximately 15 mm per minute (Rogers and Gelfand, 1998; Dynes and Steward, 2007;

Müller et al., 2008). A naı̈ve calculation based on this figure might suggest that subcellular cargo

can be delivered precisely within a few hours in most dendritic trees. However, this ignores the sto-

chastic nature of biochemical processes – motors spontaneously change directions and cargo can be

randomly delivered to the wrong site. Such chance events are inevitable in molecular systems, and in

the case of active transport they lead to diffusion of bulk cargo in addition to directed movement. If

this kind of biochemical stochasticity played out in the sushi restaurant analogy, then the waiting

time for a dish wouldn’t simply equate to the time taken for the chef to prepare the dish and for the

belt to convey it. Instead, the restaurant would be beleaguered by fickle customers who pick up

dishes they do not want, either withholding them for an indefinite period, or setting them on

another belt destined for the kitchen.

Mathematical models provide a rigorous framework to test the plausibility and the inherent rela-

tionships in conceptual models. Our study formalized the foremost conceptual model of dendritic

transport (Doyle and Kiebler, 2011) to account for trafficking in realistic dendritic morphologies.

Over a wide range of assumptions the model exhibits inherent and surprisingly punishing trade-offs

between the accuracy of cargo delivery and the time taken to transport it over these morphologies.
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Using conservative estimates based on experimental data, the canonical sushi-belt model predicts

delays of many hours or even days to match demand within 10%. Producing excess cargo and per-

mitting reversible detachment from the microtubules can mitigate this tradeoff, but at a substantial

metabolic cost, since a large amount of excess cargo is required.

These predictions are unsettling, because nucleus-to-synapse transport appears to play a role in

time-critical processes. Elevated synaptic activity can initiate distal metabolic events including tran-

scription (Kandel, 2001; Deisseroth et al., 2003; Greer and Greenberg, 2008; Ch’ng et al., 2011)
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and this has been shown to be an important mechanism of neuronal plasticity (Nguyen et al., 1994;

Frey and Morris, 1997, 1998; Bading, 2000; Kandel, 2001; Redondo and Morris, 2011). More-

over, neuronal activity has been observed to influence trafficking directly through second-messen-

gers (Mironov, 2007; Wang and Schwarz, 2009; Soundararajan and Bullock, 2014), consistent

with the hypothesis that trafficking rates are locally controlled. Genes that are transcribed in

response to elevated activity can regulate synaptic strengths (Flavell and Greenberg, 2008;

Bloodgood et al., 2013; Spiegel et al., 2014), and it has been suggested that nucleus-to-synapse

trafficking of Arc directly regulates synaptic plasticity (Okuno et al., 2012). None of these findings

imply that all kinds of molecular cargo are transported from the soma to distal dendritic locations,

since mRNA can be sequestered and locally synthesized within dendrites (Kang and Schuman,

1996; Cajigas et al., 2012; Holt and Schuman, 2013). However, the speed, precision and efficiency

tradeoffs revealed in the sushi belt model provide a principled way to understand why some pro-

cesses might require local biosynthesis, while others operate globally.

The different ways that local demand signals can influence trafficking and detachment can impact

global performance, sometimes non-intuitively. Many of these effects should be experimentally test-

able. For example, transport bottlenecks can be induced if demand signals target local trafficking

rates along microtubules (the DDT model). Transport to distal compartments will be substantially

faster when proximal demand is introduced (see Figure 3). On the other hand, uniform trafficking

combined with locally controlled detachment (DDD model, Figure 4D) can avoid bottlenecks, and

often leads to faster transport. However, this is not always the case, as was shown in Figure 5D,

where uniform trafficking is slower/inaccurate because cargo explores the basal dendritic tree even

though there is no demand in that region. Spatial tuning of trafficking speed permitted more effi-

cient cargo delivery in the model (see Figure 6). However, this has yet to be observed experimen-

tally and would require extremely stereotyped morphology and physiological needs for it to be

effective.

Intuitively, speed/precision tradeoffs arise because there is a conflict between exploring the den-

dritic tree and capturing cargo in specific locations. For irreversible cargo detachment, the capture

rate needs to be roughly an order of magnitude slower than trafficking, otherwise, compartments

proximal to the soma receive disproportionately high levels of cargo. This scaling is unfavorable for

achieving high accuracy: if it takes roughly 100 min to distribute cargo throughout the dendrites, it

will take roughly 1000 min (16–17 hr) before the cargo dissociates and is delivered to the synapses.

If, instead, cargo is able to reattach, then fast reattachment favors exploration at the cost of greater

excess (i.e. non-utilized) cargo, while slow reattachment hinders transport, since more cargo is

detached and thus immobile. Even when the vast majority of cargo is produced as excess, global

delivery times of several hours persist. Furthermore, if a neuron needs to rapidly replace a cargo

that is already present in high concentrations, the strategy of generating excess cargo will result in

large dilution times.

Overall, our results show that there are multiple ways that neurons can distribute cargo, but each

differs in its speed, accuracy and metabolic cost. Therefore, optimizing for any one of these proper-

ties comes at the expense of the others. For example, in the model without reattachment (Figure 4),

the same distribution of cargo can be achieved by: (a) location-dependent trafficking followed by

uniform release, (b) uniform trafficking followed by location-dependent release, or (c) a mixture of

these two strategies. Experimental findings appear to span these possibilities. (Kim and Martin,

2015) identified three mRNAs that were uniformly distributed in cultured Aplysia sensory neurons,

but were targeted to synapses at the level of protein expression by localized translation (supporting

option b). In contrast, the expression of Arc mRNA is closely matched to the pattern of Arc protein

in granule cells of the dentate gyrus (possibly supporting option a; Steward et al., 1998;

Farris et al., 2014; Steward et al., 2014). Trafficking kinetics do not just differ according to cargo

identity – the same type of molecular cargo can exhibit diverse movement statistics in single-particle

tracking experiments (Dynes and Steward, 2007). These differences lead us to speculate that differ-

ent neuron types and different cargoes have adapted trafficking strategies that match performance

tradeoffs to biological needs.

It is possible that active transport in biological neurons will be more efficient and flexible than

models predict. Real neurons might use unanticipated mechanisms, such as a molecular addressing

system, or nonlinear interactions between nearby cargo particles, to circumvent the tradeoffs we

observed. For this reason, it is crucial to explore, quantitatively, the behavior of existing conceptual
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models by replacing words with equations so that we can see where discrepancies with biology

might arise. More generally, conceptual models of subcellular processes deserve more quantitative

attention because they can reveal non-obvious constraints, relationships and connections to other

biological and physical phenomena (Smith and Simmons, 2001; Bressloff, 2006; Fedotov and

Méndez, 2008; Newby and Bressloff, 2010b; Bhalla, 2011; Bressloff and Newby, 2013;

Bhalla, 2014). Other modelling studies have focused on the effects of stochasticity and local trap-

ping of cargo on a microscopic scale, particularly in the context of low particle numbers (Bressl-

off, 2006; Bressloff and Earnshaw, 2007; Fedotov and Méndez, 2008; Newby and Bressloff,

2010b; Bressloff and Newby, 2013). We opted for a coarse-grained class of models in order to

examine transport and delivery across an entire neuron. The model we used is necessarily an approx-

imation: we assumed that cargo can be described as a concentration and that the multiple steps

involved in cellular transport can lumped together in a mass action model.

By constraining trafficking parameters based on prior experimental measurements, we revealed

that a leading conceptual model predicts physiologically important tradeoffs across a variety of

assumptions. Experimental falsification would prompt revision of the underlying models as well as

our conceptual understanding of intracellular transport. On the other hand, experimental confirma-

tion of these tradeoffs would have fundamental consequences for theories of synaptic plasticity and

other physiological processes that are thought to require efficient nucleus-to-synapse trafficking.

Materials and methods
All simulation code is available online: https://github.com/ahwillia/Williams-etal-Synaptic-Transport

Model of single-particle transport
Let xn denote the position of a particle along a 1-dimensional cable at timestep n. Let vn denote the

velocity of the particle at timestep n; for simplicity, we assume the velocity can take on three discrete

values, vn ¼ f�1; 0; 1g, corresponding to a retrograde movement, pause, or anterograde movement.

As a result, xn is constrained to take on integer values. In the memoryless transport model (top plots

in Figure 1B, D and F), we assume that vn is drawn with fixed probabilities on each step. The update

rule for position is:

xnþ1 ¼ xn þ vn

vnþ1 ¼
�1 withprobabilityp�
0 withprobabilityp0
1 withprobabilitypþ

8

<

:

We chose p� ¼ 0:2, p0 ¼ 0:35 and pþ ¼ 0:45 for the illustration shown in Figure 1. For the model

with history-dependence (bottom plots in Figure 1B, D and F), the movement probabilities at each

step depend on the previous movement. For example, if the motor was moving in an anterograde

direction on the previous timestep, then it is more likely to continue to moving in that direction in

the next time step. In this case the update rule is written in terms of conditional probabilities:

vnþ1 ¼
�1 with probabilitypð�jvnÞ
0 with probabilitypð0jvnÞ
1 with probabilitypðþjvnÞ

8

<

:

In the limiting (non-stochastic) case of history-dependence, the particle always steps in the same

direction as the previous time step.

vn ¼�1 vn ¼ 0 vn ¼ 1j
pðvnþ1 ¼�1Þ
pðvnþ1 ¼ 0Þ
pðvnþ1 ¼ 1Þ

1 0 0

0 1 0

0 0 1

�
�
�
�
�
�

We introduce a parameter k 2 ½0;1� to linearly interpolate between this extreme case and the

memoryless model.
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vn ¼�1 vn ¼ 0 vn ¼ 1j
pðvnþ1 ¼�1Þ
pðvnþ1 ¼ 0Þ
pðvnþ1 ¼ 1Þ

p�ð1� kÞþ k p�ð1� kÞ p�ð1� kÞ
p0ð1� kÞ p0ð1� kÞþ k p0ð1� kÞ
pþð1� kÞ pþð1� kÞ pþð1� kÞþ k

�
�
�
�
�
�
�

(7)

The bottom plots of Figure 1B and D were simulated with k¼ 0:5.

To estimate the concentration and spatial distribution of cargo in real units, we used a 1 mm/s

particle velocity and a 1 s time step to match experimental estimates of kinesin (Klumpp and Lipow-

sky, 2005, and references). We assumed a dendritic diameter of 7.2705 mm.

Relationship of single-particle transport to the mass-action model
The mass-action model (Equation 1, in the Results) simulates the bulk movement of cargo across dis-

crete compartments. Cargo transfer is modelled as an elementary chemical reaction obeying mass-

action kinetics (Keener and Sneyd, 1998). For an unbranched cable, the change in cargo in com-

partment i is given by:

_ui ¼ aui�1 þ buiþ1 �ðaþ bÞui (8)

For now, we assume that the anterograde and retrograde trafficking rate constants (a and b,

respectively) are spatially uniform.

The mass-action model can be related to a drift-diffusion partial differential equation (Figure 1E)

by discretizing into spatial compartments of size D and expanding around some position, x:

_uðxÞ»a uðxÞ�D

qu

qx
þD

2

2

q
2u

qx2

� �

þ b uðxÞþD

qu

qx
þD

2

2

q
2u

qx2

� �

�ðaþ bÞuðxÞ (9)

¼ a �D

qu

qx
þD

2

2

q
2u

qx2

� �

þ b D

qu

qx
þD

2

2

q
2u

qx2

� �

(10)

We keep terms to second order in D, as these are of order dt in the limit D! 0 (Gardiner, 2009).

This leads to a drift-diffusion equation:

_uðxÞ ¼ qu

qt
¼ ðb� aÞ

|fflfflffl{zfflfflffl}

drift coefficient

qu

qx
þ aþ b

2

� �

|fflfflfflfflffl{zfflfflfflfflffl}

diffusioncoefficient

q
2u

qx2
(11)

Measurements of the mean and mean-squared positions of particles in tracking experiments, or

estimates of the average drift rate and dispersion rate of a pulse of labeled particles can thus pro-

vide estimates of parameters a and b.

How does this equation relate to the model of single-particle transport (Figure 1A–B)? For a

memoryless biased random walk, the expected position of a particle after n time steps is E½xn� ¼
nðpþ � p�Þ and the variance in position after n steps is n pþ þ p� � ðpþ � p�Þ2

� �

. For large numbers

of non-interacting particles the mean and variance calculations for a single particle can be directly

related to the ensemble statistics outlined above. We find:

a¼ 2pþ �ðpþ� p�Þ2
2

b¼ 2p� �ðpþ� p�Þ2
2

This analysis changes slightly when the single-particle trajectories contain long, unidirectional

runs. The expected position for any particle is the same E½xn� ¼ nðpþ � p�Þ; the variance, in contrast,

increases as run lengths increase. However, the mass-action model can often provide a good fit in

this regime with appropriately re-fit parameters (see Figure 1F). Introducing run lengths produces a

larger effective diffusion coefficient and thus provides faster transport. As long as the single-particles

have stochastic and identically distributed behavior, the ensemble will be well-described by a normal
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distribution by the central limit theorem. This only breaks down in the limit of very long unidirec-

tional runs, as the system is no longer stochastic (Figure 1—figure supplement 1).

Stochastic interpretation of the mass-action model
An important assumption of the mass-action model is that there are large numbers of transported

particles, so that the behavior of the total system is deterministic. Intuitively, when each compart-

ment contains many particles, then small fluctuations in particle number don’t appreciably change

concentration. Many types of dendritic cargo are present in high numbers (Cajigas et al., 2012).

When few cargo particles are present, fluctuations in particle number are more functionally signifi-

cant. Although we did not model this regime directly, the mass-action model also provides insight

into this stochastic regime. Instead of interpreting ui as the amount of cargo in compartment i, this

variable (when appropriately normalized) can be interpreted as the probability of a particle occupy-

ing compartment i. Thus, for a small number of transported cargoes, the mass-action model

describes the average, or expected, distribution of the ensemble.

In this interpretation, the mass-action model models a spatial probability distribution. Let pi

denote the probability of a particle occupying compartment i. If a single particle starts in the somatic

compartment at t ¼ 0, and we query this particle’s position after a long period of transport, then the

probability ratio between of finding this particle in any parent-child pair of compartments converges

to:

pp

pc

�
�
�
�
ss

¼ b

a

which is analogous to Equation (3) in the Results.

In the stochastic model, the number of molecules in each compartment converges to a binomial

distribution at steady-state; the coefficient of variation in each compartment is given by:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p
ðssÞ
i

np
ðssÞ
i

v
u
u
t

This suggests two ways of decreasing noise. First, increasing the total number of transported mol-

ecules, n, proportionally decreases the noise by a factor of 1=
ffiffiffi
n

p
. Second, increasing pi decreases

the noise in compartment i. However, this second option necessarily comes at the cost of decreasing

occupation probability and thus increasing noise in other compartments.

Estimating parameters of the mass-action model using experimental
data
The parameters of the mass-action model we study can be experimentally fit by estimating the drift

and diffusion coefficients of particles over the length of a neurite. A common approach is to plot the

mean displacement and mean squared displacement of particles as a function of time. The slopes of

the best-fit lines in these cases respectively estimate the drift and diffusion coefficients. Diffusion

might not accurately model particle movements over short time scales because unidirectional cargo

runs result in superdiffusive motion, evidenced by superlinear increases in mean squared-displace-

ment with time (Caspi et al., 2000). However, over longer timescales, cargoes that stochastically

change direction can be modelled as a diffusive process (Soundararajan and Bullock, 2014).

The mass-action model might also be fitted by tracking the positions of a population of particles

with photoactivatable GFP (Roy et al., 2012). In this case, the distribution of fluorescence at each

point in time could be fit by a Gaussian distribution; the drift and diffusion coefficients are respec-

tively proportional to the rate at which the estimated mean and variance evolves over time.

These experimental measurements can vary substantially across neuron types, experimental con-

ditions, and cargo identities. Therefore, in order to understand fundamental features and constraints

of the sushi belt model across systems, it is more useful to explore relationships within the model

across ranges of parameters. Unless otherwise stated, the trafficking kinetics were constrained so

that ai þ bi ¼ 1 for each pair of connected compartments. This is equivalent to having a constant dif-

fusion coefficient of one across all compartments. Given a target expression pattern along the micro-

tubules, this is the only free parameter of the trafficking simulations; increasing the diffusion
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coefficient will always shorten convergence times, but not qualitatively change our results. In Fig-

ures 6–8 we fixed the diffusion coefficient to an optimistic value of 10 mm2 s�1 based on experimen-

tal measurements (Caspi et al., 2000; Soundararajan and Bullock, 2014) and the observation that

long run lengths can increase the effective diffusion coefficient (Figure 1—figure supplement 1).

Steady-state analysis
The steady-state ratio of trafficked cargo in neighboring compartments equals the ratio of the traf-

ficking rate constants (Equation 2). Consider an unbranched neurite with non-uniform anterograde

and retrograde rate constants (Equation 1). It is easy to verify the steady-state relationship in the

first two compartments, by setting _u1 ¼ 0 and solving:

�a1u1 þ b1u2 ¼ 0) u1

u2

�
�
�
�
�
ss

¼ b1

a1

Successively applying the same logic down the cable confirms the condition in Equation 2 holds

globally. The more general condition for branched morphologies can be proven by a similar proce-

dure (starting at the tips and moving in).

It is helpful to re-express the mass-action trafficking model as a matrix differential equation,

_u ¼ Au, where u ¼ u1; u2; :::uN½ �T is the state vector, and A is the state-transition matrix. For a general

branched morphology, A will be nearly tridiagonal, with off-diagonal elements corresponding to

branch points; matrices in this form are called Hines matrices (Hines, 1984). For the simpler case of

an unbranched cable, A is tridiagonal:

A¼

�a1 b1 0 ::: 0

a1 �b1 � a2 b2 0

0 a2 �b2 � a3 b3
. .
. ..

.

..

.
0 a3

. .
.

0

. .
.

�bN�2 � aN�1 bN�1

0 ::: 0 aN�1 �bN�1

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

For both branched and unbranched morphologies, each column of A sums to zero, which reflects

conservation of mass within the system. Assuming nonzero trafficking rates, the rank of A is exactly

N� 1 (this can be seen by taking the sum of the first N� 1 rows, which results in �1 times the final

row). Thus, the nullspace of A is one-dimensional. Equation (3) describes this manifold of solutions:

the level of cargo can be scaled by a common multiplier across all compartments without disrupting

the relation in (2).

The steady-state distribution, ~u, is a vector that spans the nullspace of A. It is simple to show that

all other eigenvalues A are negative using the Gershgorin circle theorem; thus, the fixed point

described by Equation 2 is stable. The convergence rate is determined by the non-zero eigenvalue

with the smallest magnitude of A. There are no other fixed points or limit cycles in this system due to

the linearity of the model.

Biologically plausible model of a local demand signal
There are many biochemical mechanisms that could signal demand. Here we briefly explore cytosolic

calcium, ½Ca�i, as a candidate mechanism since it is modulated by local synaptic activity and ½Ca�i
transients simultaneously arrest anterograde and retrograde microtubular transport for certain car-

goes (Wang and Schwarz, 2009). We represent the effect of the calcium-dependent pathway by

some function of calcium, f ð½Cai�Þ. This function could, for example, capture the binding affinity of

½Ca�i to enzymes that alter the kinetics of motor proteins; the Hill equation would provide a simple

functional form. If all outgoing trafficking rates of a compartment are controlled by cytosolic calcium

— i.e. for any parent-child pair of compartments we have a ¼ f ð½Ca�pÞ and b ¼ f ð½Ca�cÞ — then condi-

tion in Equation 4 is satisfied:

b

a
¼ f ð½Ca�cÞ
f ð½Ca�pÞ

¼ ~up

~uc
(12)
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where ~ui ¼ 1=f ð½Ca�iÞ. We emphasize that other potential signalling pathways could achieve the same

effect, so while there is direct evidence for ½Ca�i as an important signal, the model can be interpreted

broadly, with ½Ca�i serving as a placeholder for any local signal identified experimentally. Further,

½Ca�i itself may only serve as a demand signal over short timescales, while other, more permanent,

signals such as microtubule-associated proteins (Soundararajan and Bullock, 2014) are needed to

signal demand over longer timescales.

Simulations in realistic morphologies
We used a custom-written Python library to generate movies and figures for all simulations in realis-

tic morphologies (Williams, 2016). We obtained the CA1 pyramidal cell model from the online

repository ModelDB (Hines et al., 2004), accession number 144541 (Migliore and Migliore, 2012).

We used the default spatial compartments and set the trafficking and dissociation parameters of the

mass-action transport model without reference to the geometry of the compartments. Model simula-

tions were exact solutions using the matrix exponential function from the SciPy library at logarithmi-

cally spaced timepoints (Jones et al., 2001). In Figure 2 we simulated electrical activity of this

model with excitatory synaptic input for 5 s using the Python API to NEURON (Hines et al., 2009).

We used the average membrane potential over this period to set the target demand level. In Fig-

ures 3 and 4, we imposed artificial demand profiles with regions of low-demand and high-demand

(an order-of-magnitude difference) as depicted in the figures. Time units for simulations of the CA1

model were were normalized by setting trafficking rates ai þ bi ¼ 1 (which corresponds to a unit dif-

fusion coefficient).

In Figure 8, we obtained representative morphologies of five cell types from neuromorpho.org

(Ascoli et al., 2007). Specifically, we downloaded a Purkinje cell (Purkinje-slice-ageP43-6), a parval-

bumin-positive interneuron (AWa80213), a Martinotti cell (C100501A3), a layer-5 pyramidal cell (32-

L5pyr-28), and a granule cell from the dentate gyrus (041015-vehicle1). In these simulations, we

scaled the trafficking parameters inversely proportional to the squared distance between the mid-

points of neighboring compartments, which is mathematically appropriate to keep the (approxi-

mated) diffusion coefficient constant across the neural morphology. We confirmed that

compartment size had minimal effects on the convergence rate and steady-state cargo distribution

when the trafficking rates were scaled in this way in the reduced cable model (Figure 6—figure sup-

plement 1).

For simulations with reattachment in Figure 8, we set the detachment rate (ci) equal to the traf-

ficking rates (ai; bi) for a one micron compartment. We did this based on the observation that a fast

detachment rate provided the most favorable tradeoff curve in Figure 7C.

Incorporating detachment and reattachment into the mass-action
model
For compartment i in a cable, the differential equations with detachment become:

_ui ¼ ai�1ui�1 �ðaiþ bi�1 þ ciÞui þ biuiþ1

_u$i ¼ ciui

When ai;bi � ci, then the distribution of cargo on the microtubules (ui) approaches a quasi-

steady-state that follows Equation 3. In Figure 4, we present DDT and DDD models as two strate-

gies that distribute cargo to match a demand signal ~u$i . As mentioned in the main text, a spectrum

of models that interpolate between these extremes are possible. To interpolate between these strat-

egies, let F be a scalar between 0 and 1, and let ~u$ be normalized to sum to one. We choose ai and

bi to achieve:

~ui ¼ F ~u$i þð1�FÞ=N

along the microtubular network and choose ci to satisfy

ci /
~u$i

F ~u$i þð1�FÞ=N

Here, N is the number of compartments in the model. Setting F ¼ 1 results in the DDT model

(demand is satisfied purely by demand-modulated trafficking, and non-specific detachment,
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Figure 4C). Setting F ¼ 0 results in the DDD model (demand is satisfied purely by demand-modu-

lated detachment, and uniform/non-specific trafficking, Figure 4D). An interpolated strategy is

shown in Figure 4E (F¼ 0:3).

The mass-action model with reattachment (Equation 6) produces the following system of differ-

ential equations for a linear cable, with di denoting the rate constant of reattachment in compart-

ment i

_ui ¼ ai�1ui�1�ðaiþ bi�1 þ ciÞui þ biuiþ1 þ diu
$

i

_u$i ¼ ciui� diu
$

i

We examined the DDD model with N ¼ 100 compartments and diffusion coefficient of 10 mm2s�1.

The maximal detachment rate constant and the reattachment rates were tunable parameters, while

the reattachment rates were spatially uniform. Results were similar when reattachment was modu-

lated according to demand (data not shown, see supplemental simulations at https://github.com/

ahwillia/Williams-etal-Synaptic-Transport).

Globally tuning transport rates to circumvent the speed-specificity
tradeoff
In Figure 6, we explored whether fine-tuning the trafficking rates could provide both fast and pre-

cise cargo distribution. We investigated the DDD model with fast detachment rates in an

unbranched cable with equally spaced synapses and N ¼ 100 compartments. Large detachment rates

produced a proximal bias in cargo delivery which we empirically found could be corrected by setting

the anterograde and retrograde trafficking rates to be:

ai ¼
D

2
þb �N� 1� i

N� 2

bi ¼
D

2
�b �N� 1� i

N� 2

where i¼ f1;2; :::N� 1g indexes the trafficking rates from the soma (i¼ 1) to the other end of the

cable (i¼N� 1), and D¼ 10�m2=s is the diffusion coefficient. Faster detachment rates require larger

values for the parameter b; note that b<D=2 is a constraint to prevent bi from becoming negative.

This heuristic qualitatively improved, but did not precisely correct for, fast detachment rates in the

DDT model (data not shown).

Intuitively, the profile of the proximal delivery bias is roughly exponential (Figure 6B), and there-

fore the anterograde rates need to be tuned more aggressively near the soma (where the bias is

most pronounced), and more gently tuned as the distance to the soma increases. Importantly, tuning

the trafficking rates in this manner does not alter the diffusion coefficient along the length of the

cable (since ai þ bi is constant by construction). These manipulations produce a nonzero drift coeffi-

cient to the model, which corrects for the proximal bias in cargo delivery.
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