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Experimental observations reveal that the expression levels of dif-
ferent ion channels vary across neurons of a defined type, even
when these neurons exhibit stereotyped electrical properties. How-
ever, there are robust correlations between different ion channel
expression levels, although the mechanisms that determine these
correlations are unknown. Using generic model neurons, we show
that correlated conductance expression can emerge from simple
homeostatic control mechanisms that couple expression rates of
individual conductances to cellular readouts of activity. The correla-
tions depend on the relative rates of expression of different con-
ductances. Thus, variability is consistent with homeostatic regulation
and the structure of this variability reveals quantitative relations be-
tween regulation dynamics of different conductances. Furthermore,
we show that homeostatic regulation is remarkably insensitive to the
details that couple the regulation of a given conductance to overall
neuronal activity because of degeneracy in the function of multiple
conductances and can be robust to “antihomeostatic” regulation of
a subset of conductances expressed in a cell.

neuronal excitability | robustness | computational models | control theory

The electrophysiological signature of every neuron is determined
by the number and kind of voltage-dependent conductances

in its membrane. Most neurons express many voltage-dependent
conductances, some of which may have overlapping or degenerate
physiological functions (1–6). Furthermore, neurons in the brains
of long-lived animals must maintain reliable function over the
animal’s lifetime while all of their ion channels and receptors are
replaced in the membrane over hours, days, or weeks. Conse-
quently, ongoing turnover of ion channels of various types must
occur without compromising the essential excitability properties
of the neuron (5, 7–10).
Both theoretical and experimental studies suggest that main-

taining stable intrinsic excitability is accomplished via homeostatic,
negative feedback processes that use intracellular Ca2+ concen-
trations as a sensor of activity and then alter the synthesis, in-
sertion, and degradation of membrane conductances to achieve
a target activity level (11–27). Among the modeling studies are
several different homeostatic tuning rules that differ in how sensor
readout is coupled to the changes in conductance necessary to
achieve a target activity (11, 13, 14, 28). Regardless, these models
can self-assemble from randomized initial conditions, and they will
change their conductance densities in response to perturbation or
synaptic drive. In one of these homeostatic self-tuningmodels (14),
similar activity patterns can be associated with different sets of
conductance densities.
Thus, it is perhaps not surprising that experimental studies also

find a considerable range in the conductance densities of voltage-
dependent channels and in the mRNA expression of their ion
channel genes (29–36). The experimental studies also showed clear
correlations in these expression patterns (30, 32–35); for example,
strong linear correlations are found between mRNA copy number
for shal/A-type potassium channels and IH/hyperpolarization/
cyclic nucleotide activated channels in identified crustacean
motor neurons. It is therefore possible that these correlations are
crucial for the electrophysiological behavior of the neuron in
question.However, when large numbers ofmodel neurons (without

a homeostatic tuning rule) were made from random sets of con-
ductance parameters and then searched for those that produce a
specific behavior, they did not show correlations in conductance
expression that resemble the experimental findings (37). This find-
ing raised the question of how the correlations seen in the experi-
mental data are established and whether they are somehow
genetically hardwired. For example, correlations in ion channel
expression may simply result from explicit coregulation, such as
control of gene expression by a common transcription factor or
silencing of a subset of genes in a certain population of cells.
Another possibility is that correlations emerge from some in-
teraction between activity-dependent regulatory processes that
control the expression of different ion channel types.
We address this question in this paper using theory and compu-

tational models. We show that correlations in ion channel expres-
sion emerge as a consequence of homeostatic control mechanisms
that couple the expression rates of individual conductances to a cell-
intrinsic readout of activity. Importantly, the shape of the correla-
tion pattern is determined by the relative rates of expression of
different conductances. Furthermore, we show how degeneracy
implies that regulatory control mechanisms do not need to be as
precisely tuned as previously anticipated. For example, subsets of
conductances can be regulated antihomeostatically without in-
terfering with convergence to a target activity level, meaning that
inward conductances can up-regulate in response to elevated
activity and vice versa for outward conductances. Thus, there is
considerable flexibility in how different conductances can be
regulated while maintaining a “set point” in activity. This flexi-
bility is compatible with distinct correlation patterns seen in the
conductance expression of different neuron types.
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A deep puzzle in neuroscience is how neurons maintain their
electrical properties despite continuous ion channel turnover
and activity perturbations. Previous work proposed that ac-
tivity-dependent homeostatic rules ensure robust development
of excitability by regulating channel density, although it is not
understood how these rules shape the distribution of ion
channel types nor how finely tuned these rules must be. We
show that generic homeostatic regulation rules impose corre-
lations in the steady-state distribution of ion channels, as has
been recently observed experimentally. Specific correlations
depend on relative expression rates, and the regulation rules
themselves are far more robust than previously thought.

Author contributions: T.O. and E.M. designed research; T.O., A.H.W., and J.S.C. performed
research; T.O., A.H.W., and J.S.C. analyzed data; and T.O. and E.M. wrote the paper.

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.
1To whom correspondence may be addressed. E-mail: toleary@brandeis.edu or marder@
brandeis.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1309966110/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1309966110 PNAS | Published online June 24, 2013 | E2645–E2654

N
EU

RO
SC

IE
N
CE

PN
A
S
PL

U
S

mailto:toleary@brandeis.edu
mailto:marder@brandeis.edu
mailto:marder@brandeis.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1309966110/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1309966110/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1309966110


Results
There are several existing homeostatic neuron models that use
intracellular Ca2+ concentrations to regulate their conductances
(11, 13, 14, 18, 28, 38). These models are capable of producing and
maintaining complex activity patterns such as rhythmic bursting
that rely on the interactions between many voltage-dependent
conductances and Ca2+ dynamics. Analysis of these models is of-
ten mathematically intractable, and it is also difficult to develop an
intuitive understanding of how the distribution of conductances
is shaped over time. Therefore, in this study we start with a toy
model with three non–voltage-dependent conductances and simple
Ca2+ dynamics. We then progress to a more complicated spiking
model with three regulated voltage-dependent conductances and
finish with an analysis of an existing model that has seven voltage-
dependent conductances and three distinct [Ca2+] sensors. In all
three cases, we examine how the correlations in the steady-state
conductance distributions are shaped by the parameters that
govern regulation. We find that the intuition developed in the
simplest model carries over to more complex cases.

Correlations Arise in Simple Model of Homeostatic
Regulation
The toy (leak) model consists of multiple Ohmic conductances
with different reversal potentials expressed in a single compart-
ment (schematized in Fig. 1A). To provide a biophysical corre-
late of activity, we added first-order Ca2+ dynamics with a
biologically realistic decay time constant (100 ms) and an expo-
nential steady-state dependence on membrane potential, Vm. The
Ca2+ signal therefore gives a readout of Vm that approximates the
way that Ca2+ concentration responds to membrane potential
fluctuations in biological neurons.
Finally, we added a mechanism that slowly varies each mem-

brane conductance according to activity. To ensure a stable ac-
tivity level, we postulate a “target value” for [Ca2+] such that each
conductance is up- or down-regulated according to the current
[Ca2+] level (Methods), thus determining a homeostatic rule. For
example, the inward conductance gin down-regulates when [Ca2+]
is above its target value and up-regulates below it (Fig. 1A).
The expression level of each conductance in this model is

therefore independently coupled to activity with its own slow dy-
namics (Fig. 1B). It is important that we assume regulation is slow
because this corresponds to what is observed experimentally, where
homeostatic or compensatory changes in neuronal membrane
conductances in many preparations occur over many hours or days
(39–41). It also turns out that because regulatory dynamics aremuch
slower than fluctuations in activity, the toy model approximates the
way in which complex, voltage-dependent conductances shape av-
erage activity over similarly slow timescales (42) (Methods:
Mathematical Analysis).
Fig. 1C shows the behavior of this model. The model has an

outward conductance g1 (reversal potential,Erev =−90mV) and two
inward conductances, g2 (Erev = −30 mV) and g3 (Erev = +50 mV).
In all of the traces in Fig. 1C, the blue traces show the evolution of
a canonical version of themodel in which the inward conductances
are down-regulated when [Ca2+] is above target and up-regulated
when [Ca2+] is below target. The outward conductance is regu-
lated in the opposite direction. Each of these conductances has
a different time constant of regulation (SI Appendix, Methods).
The light blue traces in Fig. 1C show multiple runs initialized

with random values for each conductance. The bold traces show
the trajectory of the model starting at the average value of this
random initial distribution. In this model, the final conductance
values are different for each distinct run. We asked how the values
of the regulation time constants influence the evolution of the
model by varying each independently. The green traces in Fig. 1C
show a version of the model in which the time constants for g1, g2,
and g3 are scaled (× 1, × 1=10, × 1=40, respectively), resulting in

steeper rates of change in this case. In both of these versions of the
model, [Ca2+] equilibrates at its target value. Interestingly,
when we changed the sign of g2 (thus making its direction of
regulation antihomeostatic), the model also converges to target
[Ca2+] value. In fact, homeostatic models with multiple con-
ductances can tolerate such antihomeostatic regulation in
a subset of conductances provided broad constraints on the
regulation rates (τi) are respected.
How do the regulation rates influence the resulting steady-state

distribution of conductances? Fig. 1D shows three views of a 3D
plot showing the conductances as they are distributed initially (or-
ange points) and at steady state. Each version of the model (with
different sets of regulation rates) converges to a distinct region of
conductance space, but these regions sit on a common plane (pink
rectangle). This plane is simply the solution set of all conductances
that produce target activity in the model. Thus, the regulation rates
(as well as the initial values of the conductances) determine the
direction in which themodel evolves in conductance space, whereas
the point of intersection of each trajectory with the solution plane
dictates the steady-state conductance values.
The correlation between each pair of conductances is obtained by

projecting the steady-state clouds of points in Fig. 1D onto the re-
spective axes. Fig. 1E shows distinct pairwise correlations between
all three conductances. Changing the regulation rates changes the
correlations (panel 2, green) as does making one of the regulation
directions antihomeostatic (third panel, red). Thus, correlations
emerge from homeostatic rules, and the specifics of the correlations
depend on the specifics of the rates governing the insertion and
removal of the channels in the membrane.
Mathematically, the pairwise correlations are determined by

the geometric relation between the plane and the location of the
steady-state points. We calculated the slopes of the correlation
between each conductance (black lines in Fig. 1E) as follows (full
details are in Methods: Mathematical Analysis). The trajectories of
the models’ evolution are shown in the 3D plots of Fig. 1D. The
light blue arrow in the large plot shows the direction of the mean
trajectory as it hits the plane, whereas the pink arrow shows the
surface normal of the plane. To calculate the correlation vector
at this point, we simply resolve the light blue arrow onto the
plane as shown (dark blue arrow). The ratios of the components
of this correlation vector provide the pairwise correlations in the
conductances.
The relationship between the solution plane, the initial conduc-

tance values, and the direction of the model’s trajectory through
conductance space (determined by the regulation rates and the form
of the regulatory rule) dictates whether or not the model converges
to stable target behavior (see Methods for analysis of convergence/
stability). Intuitively, as long as the net movement of the trajectory is
toward the plane, the regulation rule will converge. Many combi-
nations of regulation rates achieve this, including the three sets of
rates in Fig. 1. More generally, if expression rates and signs (i.e.,
directions) are chosen at random in this toy model, over half (62%)
of the resulting models produce stable target activity with conduc-
tance values inside reasonable bounds (<1 mS/nF; Methods).
Thus, the stability of homeostatic regulation is relatively in-

sensitive to the regulation rates. Moreover, because the rates
determine correlations, there is a large amount of freedom to
determine the direction and magnitude of correlations between
conductances. The specification of relative expression rates is
therefore a robust mechanism by which distinct cell types can
maintain distinct correlations in their conductances.

Correlations Emerge in a Homeostatically Regulated Spiking
Model
A simple leak model is intuitive to understand and straightforward
to work with mathematically, but the most widely relevant and
interesting examples of homeostatic regulation involve voltage-
dependent conductances. The dynamics of regulation in thesemore
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complex cases are difficult to study because there is a far more
complicated relationship between the distribution of conductances
and the resulting activity pattern. It was therefore not immediately
clear that the results we obtained for the leak model would carry
over to more realistic conductance-based models of spiking neu-
rons. To address this, we constructed a single-compartment,

conductance-based model of a spiking neuron with seven voltage-
gated conductances, a fixed leak conductance, and realistic cal-
cium dynamics. Three of the seven voltage-gated conductances
(A-type potassium, gKA, delayed rectifier, gKd, and hyperpolar-
ization-activated mixed cation conductance gH) in this model are
controlled by the same homeostatic regulation rule as in the toy

Fig. 1. A toy model of activity-dependent conductance regulation. (A) Schematic of a neuron with regulated inward (gin) and outward (gout) conductances.
Inward conductances promote Ca2+ influx through voltage-gated calcium channels (red) by depolarizing the membrane potential, whereas outward con-
ductances inhibit Ca2+ influx. In turn, Ca2+ influx up-regulates the outward current and down-regulates the inward current possibly via modulation of tran-
scription rates or ion channel trafficking dynamics (gray circle). (B) A simplified model neuron with three Ohmic conductances g1, g2, and g3, each with
a different reversal potential (−90, −30, and +50 mV, respectively). Calcium dynamics are first order with exponential steady-state dependence on membrane
potential, cðVmÞ (Methods) and each conductance is regulated with a specific regulation time constant, τi , according to the difference between [Ca2+] and
a target value, ct . (C) Behavior of three versions of the model with different sets of regulation rates. The traces show the evolution of the three conductances
and internal [Ca2+] in 30 simulations of each version of the model. Blue traces, original rates (τ1; τ2; τ3); green traces, scaled rates (τ2→τ2=10; τ3→τ3=40); red traces,
g2 rate flipped ðτ2→− τ2Þ. (D) Steady-state conductance distributions. 3D plots showing all three conductances for 300 runs using each of the three sets of
regulation rates (orange points, random initial values; blue, original rates; green, scaled rates; red, rate flipped). Each 3D plot is a different view of the same data
and the colored curves are the sample trajectories plotted in C. The large plot to the right shows the calculated solution space of conductance values that give
target [Ca2+] (pink plane). The arrows represent the surface normal of the solution plane (pink), the velocity vector for the trajectory of the mean model trace
with the original rate set (light blue), and the vector obtained by projecting this velocity vector onto the solution plane (dark blue). (E) Scatterplot matrices
showing pairwise scatterplots (off-diagonals) between the three maximal conductances in each version of the model. Histograms (diagonals) show the distri-
bution of each maximal conductance by itself. Black lines in each scatterplot are the correlations predicted by resolving the model trajectory onto the solution
set (Methods) as illustrated in the right plot of D. The schematic to the right of the plots show how the axes in the plots are organized.
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model with a single intracellular [Ca2+] target. The remaining
conductances are fixed at values that generate tonically spiking
behavior over a range of randomly chosen initial values for the
three regulated conductances (SI Appendix, Methods).
Fig. 2A shows the evolution of [Ca2+] in this model for three

different sets of regulation rates. As with the toy model, we fixed
a default set of rates (blue traces) and from these defined a scaled
set (0:5× τgKA, 2× τgH ; green traces) and a flipped set (− 1× τH , red
traces). All three sets of rates producemodels whose average [Ca2+]
converges to the homeostatic target. Fig. 2B shows membrane po-
tential activity at different time points in the evolution of each ver-
sion of the model. The random initial conductance distribution
produces spiking neurons with high firing rates (∼30 Hz), and as
a result, [Ca2+] is above target. Over time, all three versions of the
model converge to a set of conductances (Fig. 2C) that have a lower
firing frequency and qualitatively different spike shapes.
The steady-state conductance distributions for this model are

shown in the 3D plots in Fig. 2D. In this region of conductance
space, the sets of solutions that give target [Ca2+] are seen to sit
on a surface that is close to being planar. Again, these solutions
give rise to pairwise correlations between the three regulated
conductances, as can be seen in the correlation plots at the bottom
of Fig. 2D. Thus, despite the complex, nonlinear relationship be-
tween the dynamics of the voltage-dependent conductances in this
model and membrane potential activity, the steady-state con-
ductances distribution behaves in a similar way to the toy model.
This simple behavior will not be true for all regions of parameter

space because it is known that the solution spaces for a particular
type of activity can be complex and exhibit abrupt dependencies
on the maximal conductances. However, locally, these solution
spaces can often be well approximated by a flat space owing to the
smooth dependence of quantities such as “average calcium con-
centration” on maximal conductances (Methods: Mathematical
Analysis). The toy model is therefore a useful tool for un-
derstanding general properties of homeostatic regulation.

Correlation Structure in a Seven-Conductance Homeostatic
Model
The toy model of homeostatic regulation can explain, in part, how
correlations can arise in the conductance distributions of real
neurons, as has been observed recently (30, 33), and makes a
strong prediction about the behavior of more complex and re-
alistic regulatory models. Specifically, the simplified model pre-
dicts that regulatory control mechanisms that independently tune
multiple conductance densities according to a target activity level
impose a correlation structure on the steady-state conductance
distribution. Furthermore, it predicts that a subset of membrane
conductances can be regulated antihomeostatically, and this can
nonetheless produce target behavior, but with a different final
conductance distribution for a given range of initial conditions. To
investigate this prediction in a more realistic situation with mul-
tiple nonlinear conductances and multiple activity sensors, we
examined how regulation shapes steady-state conductance dis-

Fig. 2. Behavior of the simple model is recapitulated
in a model with active conductances. Behavior of
a spiking model neuron with three regulated volt-
age-dependent conductances controlled by the sim-
ple regulatory rule in Fig. 1B. Three versions of the
model are shown with the regulation rates at their
original values (τgA; τgKd ; τgH, blue plots; Methods),
scaled (τgA→0:5× τgA; τgH→2× τgH; green), and the
regulation rate for gH flipped (τgH→− τgH; red). (A)
Example traces of [Ca2+] in each of the three versions
of the model (traces truncated at 1,500 ms). (B) Ex-
ample membrane potential traces at different time
points (1, 2, and 3) for each version of the model. (C)
Example traces showing the evolution of the three
regulated conductances in 30 simulations of each
version of the model. (D) (Upper) 3D scatterplot
showing the steady-state conductance distributions
for 300 model simulations with each set of rates. The
two plots show two rotated views of the same data.
(Lower) Correlation plots of steady-state con-
ductances for each version of the model.
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tributions in an existing, complex model of a self-regulating
rhythmically bursting cell developed in Liu et al. (14).
The Liu et al. model has seven voltage-dependent conductances

plus a leak conductance (SI Appendix, Methods), a Ca2+ buffering
mechanism, and three activity sensors that depend on calcium influx
through the two voltage-gated Ca2+conductances. These sensors
act as filters that decompose the Ca2+ signal into three bands: a fast
band corresponding to Ca2+ transients caused by spikes, a slow
band corresponding to Ca2+ waves that generate rhythmic bursting,
and a steady-state band that measures average Ca2+ influx. The
regulatory control mechanism imposes a target on each sensor that
was empirically chosen (14) to generate bursting models with dy-
namics similar to crustacean pacemaker neurons. This model thus
has a high-dimensional conductance space and multiple constraints
imposed by its regulatory mechanism.
We generated a population of 9,370 Liu et al. model neurons by

initializing each cell with uniform, randomly distributed maximal
conductances and allowing the conductance distribution to reach
steady state. An example run is shown in Fig. 3A, where it is im-
portant to note the short timescale of convergence. This timescale,

determined by a short conductance regulation time constant of 5 s,
does not mirror the biology but was necessary to make repeated
simulations of this model practical and does not qualitatively change
the steady-state solution (14). Eight thousand eighty-seven models
(86%) from this initial population converged to a steady state with
sensor values equal to their targets (SI Appendix, Methods). The
resulting conductance distribution for these models is shown in Fig.
3B, where the values of the maximal conductances have been re-
stricted to physiologically reasonable bounds. The relationship be-
tween the maximal conductances in this solution space is clearly
more complex than can be described by straightforward linear cor-
relations as in the simpler models of Figs. 1 and 2. Such a relation-
ship is to be expected given the highly nonlinear relationship
between the effects of each of themodel’s conductances on the three
activity sensors. Nonetheless, a clear pattern is evident in the pair-
wise plots of maximal conductances (Fig. 3B).
The intuition developed in the toy model of Fig. 1 tells us that

the set of solutions found by a homeostaticmechanism is a subset of
all available solutions. To approximate the set of all solutions over
a range of conductances in the complex model, we analyzed the

Fig. 3. Structure of the steady-state conductance
distribution in a complex homeostatic model neuron.
Behavior of a complex bursting model neuron with
seven regulated voltage-dependent conductances
and a regulation rule that uses three [Ca2+] sensors.
(A) Evolution of the maximal conductances over time
for a single regulated neuron. Example voltage
traces at three time points along the evolution tra-
jectory are shown at the right, showing that the
model converges to the target bursting behavior
(horizontal line = 0 mV). (B) Pairwise scattergrams
(off-diagonals) and histograms (diagonals) of the fi-
nal values for the seven regulated maximal con-
ductances after 1 h of simulated time. Each
scattergram is a 2D histogram with color represent-
ing count density (red, high; yellow, intermediate;
green, low; blue, zero). The conductance ranges
plotted are (in μS) 0 through 146 (gNa), 2.9 (gCaT), 5.4
(gCaS), 134 (gKA), 134 (gKCa), 69 (gKd), and 0.8 (gH). (C)
Pairwise scattergrams and histograms for the same
seven conductances as in B, showing randomly sam-
pled solution space of models that satisfy target
sensor values within 10%. Ranges for each conduc-
tance axis are the same as B. (D) Thinned (5,000
points) pairwise scatterplot between gKd and gNa in
converged homeostatic models (regulated) and for
random sampling (random). These scatterplots cor-
respond to the subplots outlined with pink boxes in
B and C, respectively. Example voltage traces of labeled
models are plotted to the right for several different
points in the solution space (horizontal line = 0 mV).
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membrane potential behavior of 2 × 106 nonregulating model
neurons randomly parameterized from a uniform distribution
spanning the physiologically realistic range of maximal con-
ductances in the converged, regulated models. Of these random
models, we selected 8,638 that had activity within 10% of the target
sensor values. This tolerance corresponds to approximately 1 SD
of the steady-state sensor values in the converged Liu et al.
models and was found to be sufficient to determine bursting be-
havior (SI Appendix, Methods). In both regulated and randomly
selected models, a wide variety of bursting behaviors is evident as
can be seen in the traces in Fig. 3D. Furthermore, representatives
of the different characteristic behaviors (as delineated by mem-
brane potential waveform, bursting frequency, and number of
spikes per burst) can be found in both cases.
The correlation structure in membrane conductances of the

randomly selected bursting models is markedly different from the
structure observed in models that implement regulatory control
to achieve their target activity (Fig. 3 B–D). This difference
demonstrates that the regulatory control mechanism does indeed
impose a characteristic correlation structure on the distribution of
conductances, as predicted by the analysis of the toy model. In
general, the randomly selected solutions exhibit less structure
in this distribution, as exemplified in the scatter plots of gNa vs. gKd
in Fig. 3D. However, certain conductance pairs show a compen-

satory relationship that is preserved in the Liu et al. models, for
example, gCaS vs. gKA in Fig. 3 B and C.
Finally, we addressed the question of how the model behaves

when conductances are regulated in the wrong direction. The left
table in Fig. 4A shows the regulation coefficients used in the orig-
inal model alongside a set of coefficients that was formed changing
the signs of the regulatory coefficients of the A-type potassium
conductance, gKA. In the original model, gKA is up-regulated when
either the slow or the steady-state Ca2+ sensor is above target and
down-regulated when these sensors are below their target level.
The sign change in the alternate model causes gKA to be regulated
in the opposite way, which is intuitively antihomeostatic.
As predicted by the analysis of the simplified model, changing

regulation signs in this way causes convergence to a different dis-
tribution of final membrane conductances. This effect can be seen
by comparing the correlation maps and histograms in Fig. 4B. For
example, the distribution of gKA and gCaS is shifted toward lower
values, which has a clear effect on the pairwise relation between
these two conductances (scatterplots in Fig. 4C). On the other
hand, the distribution and correlation pattern of gKd and gNa is left
relatively unchanged. Despite this shift in the overall distribution of
conductances, target sensor values are achieved, and this results in
functional bursting behavior as shown in Fig. 4C. To make a valid
comparison with the behavior of the original model, we used the

Fig. 4. Antihomeostatic regulation can coexist with
homeostatic regulation in a complex model. (A) Reg-
ulation coefficients in the original Liu et al. model
(Left) and in an alternate version in which regulation
coefficients for gKa are reversed (Right). Each co-
efficient determines whether a conductance is up- or
down-regulated when sensors are above or below
targets (+1, up-regulate if below target/down-
regulate if above target; −1, down-regulate if below
target/up-regulate if above target.) (B) Pairwise scat-
tergrams and histograms of the final values for the
seven regulated maximal conductances after 1 h of
simulated time using the original parameters of the
Liu et al. model (Left) and the alternate model (Right).
Each scattergram is a 2D histogram with color repre-
senting count (red, high; yellow, intermediate; green,
low; blue, zero). In both sets of scattergrams, the
ranges plotted are 0 through 440 (gNa), 8.6 (gCaT), 16.2
(gCaS), 402 (gKA), 402 (gKCa), 207 (gKd), and 2.3 μS (gH).
(C) Detail of the pairwise relationships between gKd/
gNa and gH/gCaT (pink boxes in B) shown as thinned
scatterplots (5,000 points) for the original model
(Upper) and the alternate model (Lower). Example
voltage traces of labeled points in solution space are
shown to the right (horizontal line = 0 mV).
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same random initial conditions. This condition resulted in fewer
models (77%) converging to steady state according to our criteria
than in the original model. Perhaps surprisingly, examples that are
representative of the diverse range of bursting behaviors in the
original model can nevertheless be easily found in the alternate
model, as is evident in the example traces in Fig. 4C. Thus, two
different sets of regulation rules find a subset of the available
bursting solutions in conductance space, and this distribution is
concentrated in a different region for each set of rules. The fact that
the alternate model converges to the same functional behavior
shows that there is sufficient degeneracy in the dynamical properties
of the eight conductances to reach target activity despite the altered
regulation rule.

Discussion
Almost twenty years ago, a handful of theoretical studies (11, 13, 28)
suggested that stable neuronal function requires some kind of ho-
meostatic regulation of ion channel expression. These studies trig-
gered a host of experimental studies that are consistent with the idea
that nervous systems must balance the mechanisms that allow them
to be plastic with others that maintain their stability (5, 40, 41, 43).
Subsequently, both theoretical and experimental studies showed
that there are multiple solutions consistent with very similar activity
patterns (31, 37, 44–47). It is important to recognize that homeo-
static tuning rules, such as those studied here, do not invariably
produce the same set of channel densities, but instead result in
a target activity that is consistent with a range of solutions. It is also
important to remember that, although homeostatic tuning rules can
compensate for many perturbations and for some genetic deletions,
they cannot compensate for all deletions of specific currents. Indeed,
when there are multiple currents with degenerate, or overlapping
functions, compensation occurs easily, but if there is a single current
responsible for an important process, homeostatic tuning rules will
never achieve perfect compensation on deletion of this current.
One of the contributions of the present work is that we have

shown that the range of solutions consistent with a particular ho-
meostatic rule has a specific structure that results in correlations in
ion channel expression. Thus, the experimental measurements of
correlations (29, 30, 33, 35) may provide direct insight into the
underlying regulatory rates in biological neurons. Moreover, we
now demonstrate that the homeostatic processes themselves can
be far sloppier than might have been previously expected. This
robustness is comforting, as it reassures us that these kinds of
processes can be instantiated in biological systems that have var-
iable and noisy components.
Before relating our modeling results to biology, it is important to

note the assumptions our work is based on and their potential
limitations. The clearest simplifying assumption we have made is
the form of the regulatory rule, which simply modulates the rate of
expression of different membrane conductances to a Ca2+ error
signal. Biological neurons use complex cascades of signal trans-
duction and trafficking mechanisms to control ion channel expres-
sion, and these mechanisms remain the focus of intense research
(23, 39, 48–50). Our results rely on these underlying pathways ap-
proximating a simple feedback rule that depends on intracellular
Ca2+concentration. An important task for future work is to relate
simplified schemes such as the regulatory rule we use here to the
details of the biological signaling mechanisms as they become
available. Nonetheless, existing experimental work that measures
the dynamics of homeostatic plasticity and its dependence on mean
intracellular Ca2+ concentration are consistent with the qualitative
behavior of simple models (15, 20, 23).

Homeostasis and Degeneracy
Most neurons express upward of tens of different types of ion
channels, and many of these channels overlap in their biophysical
properties. For example, several genetically distinct potassium
channels can coexist in a single mammalian neocortical neuron

(34), and to some extent, these channels perform similar elec-
trophysiological functions. This kind of functional overlap is an
example of degeneracy (51, 52), and its existence in membrane
conductance properties of ion channels has important implica-
tions for homeostatic regulation mechanisms (6). This observa-
tion was first made theoretically by examining the degeneracy
present in the map between conductance space and electrophys-
iological phenotypes, where it is clear that multiple conductance
distributions can give rise to electrical properties that are, in bi-
ological terms, virtually identical (46, 46, 53). Degeneracy of this
kind has been observed experimentally (31) and prompts the
question of how neurons regulate multiple conductances to
achieve a characteristic electrical behavior. A clue was found in
the observation that neurons of a defined type show strong
correlations between both mRNA expression and functional ex-
pression of different ion channels (29, 30, 33). This finding led
to the idea that correlations provide an important determinant
of cell identity by ensuring fixed ratios in the expression of dif-
ferent ion channel types (54). However, it is not known how such
correlations are achieved or maintained. Our findings add to this
picture by showing that feedback regulation of conductances to-
ward activity set points constrains the steady-state distribution and
that this can produce distinct correlation patterns.
Not only could this effect contribute to observed correlations

in experimental measurements of membrane conductances (29,
30, 32–35), but it may also explain why previous studies that found
successful models based on phenomenological properties of neu-
ronal activity failed to replicate biological correlation structures
(37, 47, 54). These previous studies randomly sampled the set
of membrane conductances in complex, rhythmically bursting
neuron models and selected combinations of conductances that
reproduced biologically realistic behavior. However, the correla-
tion pattern found by randomly sampling in this way did not re-
semble correlation patterns in found in experiments: a result
that parallels the situation in Fig. 3, where randomly selected
models and homeostatically regulated models exhibit very dif-
ferent conductance distributions. To replicate experimentally ob-
served correlations in models, it may therefore be necessary to
obtain a quantitative description of how conductances are regu-
lated with respect to activity and the ways that different con-
ductances shape activity.
Nonetheless, activity-dependent regulation cannot be thought of

as a catch-all for explaining ion channel expression. In biological
neurons, we expect many constraints to exist besides broad activity
targets, and these will further shape the solution space. For ex-
ample, the coordinated expression of ion channels may be coupled
to activity-independent processes, such as interactions between
scaffolding molecules and auxiliary subunits that stabilize and lo-
calize surface expression. Expression levels may also be hard-wired
in a way that only makes sense from an evolutionary perspective,
including conserved transcriptional control of multiple ion channel
genes by a shared transcription factor or regulatory element. In any
case, additional rules which fine tune conductance distributions
within neurons can be readily layered on top of activity-dependent
regulation because, as we have shown, activity-dependent rules are
themselves remarkably robust and flexible.

How Conductance Correlations Are Related to Expression
Rates
In all of the models, we saw that the shape of the steady-state
distribution of conductances depends on the rate at which each
conductance is regulated with respect to other conductances. One
way to think of this is to imagine a neuron that homeostatically
regulates two-pore domain (leak) potassium channels more
quickly than persistent sodium channels. In situations where ac-
tivity is too low, the potassium channels will be rapidly removed
from the membrane, and the sodium channels will slowly start to
accumulate. By the time the activity target is reached, the potas-
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sium channels will have undergone a larger change in their ex-
pression than the sodium channels. Throughout a population of
these hypothetical cells with varying activity histories, one would
observe a large range in potassium channel density and a smaller
range in sodium channel density, with the two channel types
showing correlated expression according to the combinations
that achieve the homeostatic target.
In biological neurons, it is therefore plausible that differing rates

of expression between ion channel subtypes provide a mechanism
for determining cell type signatures in correlated ion channel ex-
pression. Viewed in this way, the regulatory mechanisms are a
more fundamental determinant of cellular identity than the ex-
pression levels of ion channels and mRNAs at a single point in
time. This perspective is consistent with the principle that specific
transcription factors are often used as cell typemarkers andwith the
observation that reliable cell type classification requires the ex-
pression of many ion channel genes to be measured combinatorially
(34, 55).

Robust Regulation from Degenerate Ion Channel Function
An important consequence of degeneracy in membrane con-
ductances is that the regulation of all individual conductances in
a given neuron need not occur in the correct direction in the ho-
meostatic sense, provided a sufficient subset of remaining con-
ductances is appropriately regulated. Recent work (56) that
quantified expression of the transcriptome of murine cortical
neurons revealed both up- and down-regulation of inward and
outward conductances in response to sustained membrane po-
tential depolarization. However, the samemanipulation in similar
preparations has also been shown to result in a net down-regu-
lation of intrinsic excitability (15, 50). Our work here helps resolve
these empirical observations and cautions against focusing on
individual genes and proteins when trying to understand com-
pensatory responses.
In general, this indicates that homeostatic mechanisms in neu-

rons leave more room to maneuver in the way individual con-
ductances are regulated than previously appreciated. Indeed,
recent experiments indicate that in addition to homeostatic regu-
lation of maximal conductance, the half-activation of voltage-gated
conductances can be subject to regulation and that this permits
tuning of rebound spiking in dopaminergic cells of the substantia
nigra (57).
The advent of high-throughput, multiplexed monitoring of gene

expression, protein expression, and neuronal activity offers the
potential to quantify the level of degeneracy in nervous systems. In
principle this will allow us to explore questions that, at present,
can only be fully addressed in a theoretical setting, such as how the
full complement of ion channels in a population of neurons might
be regulated during development and in response to perturba-
tions. Our study highlights the role of degeneracy in homeostatic
systems, illustrating the extent to which degeneracy explains vari-
ability and enables systems to cope with aberrant regulation of
a subset of components. A full understanding of homeostasis in
degenerate systems is a therefore a prerequisite to understanding
phenotypic variability in nervous systems, and why, in the case of
many diseases, the nervous system may not be able to compen-
sate for loss of function.

Methods
Mathematical Analysis. Here we analyze the regulatory system in the case of a
single calcium sensor, i.e., when regulation is just a function of instantaneous
calcium concentration. For the toy model, we can derive explicit expressions
for the conductance correlations and conditions for convergence/stability of
the regulatory system. The more complex voltage-dependent case is similar
locally. The details of how average calcium concentration depends on each
of the conductances will determine how well local behavior approximates
global behavior in specific cases.

The equations for the toy model are:

Cm
dV
dt

¼
X
i

giðEi −VÞ

τCa
d
�
Ca2þ

�
dt

¼ �
cðVÞ− �

Ca2þ
��

τi
dgi

dt
¼ gi

��
Ca2þ

�
− cT

�
;

where Cm is (unit = 1 nF) membrane capacitance, V is membrane potential,
gi is conductance, Ei is the reversal potential corresponding to each con-
ductance, τCa is calcium decay time constant, cðVÞ is the membrane potential-
dependent steady-state calcium concentration, τi is the conductance regulation
time constant, and cT is the calcium concentration target.

For slow regulation we can assume τigi
−1 � τCa; τm (where τm is the mem-

brane time constant) and we replace V and ½Ca2þ� with their steady-state values.
This results in an autonomous system of equations in the conductances alone:

_gi ¼ ωigiuðgÞ; [1]

where the dot indicates time derivative, g ¼ ð. . . ;gi ; . . .Þ and we have written
uðgÞ ¼ cðVðgÞÞ− cT and ωi ¼ τ−1i for convenience. Unfortunately, this system
is nonlinear and cannot be solved explicitly (as a function of time) by stan-
dard methods. We can, however, describe the locus of the solution trajectory
in the toy model. We can also derive conditions for stability and determine
the pairwise correlations at steady-state in more general cases.

The solution space for the toy model is obtained by setting Eq. 1 to zero,
which results in a (hyper) plane equation in g:

0 ¼
X
i

giðEi −VssÞ ¼ g·n; [2]

where n ¼ ðEi −VssÞ and Vss ¼ c−1ðcT Þ.
A more general case with voltage-dependent conductances has a similar

expression for the solution set, namely:

0 ¼
X
i

giðVÞðEi −VÞ;

where V denotes the mean membrane potential at (quasi) steady-state. This
equation no longer defines a hyperplane due to the dependence of gi on V .
It is, however, locally approximated by a plane of the form 2 by setting the gi

to their value at a particular equilibrium solution. The general solution space
is thus an (n-1) manifold (possibly containing singularities where the steady-
state is unstable or when membrane potential activity abruptly changes with
variation in a conductance). This relates the toy model to more complex
models involving voltage-dependent conductances.

Eq. 1 defines the direction of the flow of the system at any point in
conductance space. The pairwise correlations can be computed in general by
resolving the flow vector onto the solution space near an equilibrium point.
We write the system as:

_gi ¼def Fi :

Linearizing about a point in conductance space (g0) and rewriting
g↤g−g0 gives

_g ¼ Ag

where A ¼ ∂Fi=∂gj . The direction of flow is therefore given by Ag. The
correlation vector, gcorr , is then computed at g0 as follows:

gcorr ¼ Ag0 − ÆAg0; n̂æn̂; [3]

where n̂ is the unit normal vector to the solution plane, n̂ ¼ n=knk defined in
Eq. 2. Pairwise correlations are then obtained from the ratios of the com-
ponents of gcorr . This shows explicitly how the correlations depend on the
expression rates of each conductance for arbitrary regulation rules.

For example, for the toy model, A becomes:

A ¼
(
ωigi

∂u
∂gj

−ωigiuδi; j

)
i; j

; [4]

where δi; j is the Kronecker delta symbol. Substituting this into 3 and using
the equation for n defined in 2 gives an explicit expression for the correla-
tions in terms of the parameters of the model. This calculation was used to
produce the correlation lines in Fig. 1E.

Alternatively, single-sensor models permit the loci of the trajectories to be
determined by taking the quotients the derivatives of each conductance
defined in 1 when ½Ca2þ�≠cT :
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_gi

_gj
¼ ωigi

ωjgj
so;

Z ​
_gi

gi
dt ¼ ωi

ωj

Z ​
_gj

gj
dt:

This gives gi ¼ rg
τj=τi
j for each i, j with r determined by the initial values

of each conductance, r ¼ gið0Þgjð0Þ−τj=τi . Solutions (where they exist) are
therefore given by solutions to the following system of equations, which
define the intersection points of the trajectory loci with the solution plane:

0 ¼ P
i
giðEi −VssÞ

gi ¼ gið0Þgjð0Þ−τj=τi gτj=τi
j

9=
;∀i; j:

The existence of strictly positive solutions to this system on the branch of the
locus in which the trajectory moves provides a criterion for the convergence
of the homeostatic rule.

Numerically, the system described in Fig. 1 converges in 62% of cases (6151
out of 10,000 simulations) where the regulation rates are randomly chosen on
the ball defined by τ ¼ 104 s, τ ¼ ð. . . ; τi ; . . .Þ.

The linearization also allows us to provide explicit necessary conditions for
stability at steady-state. Imposing steady-state conditions in 4, A becomes:

A ¼
(
ωigi

∂u
∂gj

)
i;j

¼ a⊗b;

where ⊗ denotes outer product, a ¼ ð. . . ;ωigi ; . . .Þ, and b ¼ �
. . . ; ∂u∂gi

; . . .
�
.

The characteristic equation of this linearization is therefore:

ja⊗b− λδi;j j ¼ ðλ− a·bÞλn−1

This has n− 1 degenerate solutions λ ¼ 0 and a single solution, λ1 ¼
a·b ¼ P

i ωigi
∂u
∂gi
. The zero eigenvalues prevent us from rigorously deriving

sufficient conditions for stability using the linearization alone [in fact, these
correspond to a center manifold (58) that defines the solution space, which
we know is stable in the toy model]. We can, however, provide necessary
conditions by considering the unstable case, λ1 > 0. Now,

∂u
∂gi

¼ dc
dV

����
ss
:
∂V
∂gi

����
ss
¼ dc

dV

����
ss
:
ðVss − EiÞ

G
;

where G ¼ P
i gi . Therefore the condition λ1 >0 implies

a·b ¼
X
i

ωigiðVss − EiÞ> 0:

So necessary conditions for stability are:

X
i

gi

τi
ðEi −VssÞ> 0:

This is intuitively clear since Ei −Vss are just the components of the normal
to the solution space; i.e., for the system to be stable, trajectories must not
move away from the solution plane when perturbed.

Computational Modeling. Details of all computational models and simulations
are contained in the SI Appendix, Methods.
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